• Title/Summary/Keyword: Flexible substrate

Search Result 704, Processing Time 0.036 seconds

Structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate (수소 분위기에서 유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성)

  • Jo, D.B.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under hydrogen ambient gases (Ar, $Ar+H^2$) at room temperature. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $H^2$ under $Ar+H^2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show good current density-voltage-luminance characteristics. This suggests that flat surface roughness and low electrical resistivity of a-IZO anode film lead to more efficient anode material in OLED devices.

Analysis of the Growth Characteristics of Cardiac Cells According to Mechanical Properties of Substrates Using the Simplified Measurement Technique of Tracker

  • Abdullah, Abdullah;Kanade, Pooja P.;Oyunbaatar, Nomin-Erdene;Jeong, Yun-Jin;Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.6-11
    • /
    • 2022
  • To date, various techniques have been utilized to assess the contractility of cardiomyocytes and their response to drug-induced toxicity. However, these techniques are either invasive or involve complex fabrication methods and expertise. Here, we introduce the use of video-based analysis software to track the motion of cardiomyocytes and assess their contractility. The software, called "Tracker", is freely available and this is the first attempt at using it for cardiac contractility measurement. We used the software to measure the contractile properties of cells cultured on a rigid substrate and two flexible polydimethylsiloxane (PDMS) substrates having different elastic moduli day-wise up to eight days. Contractility was found to be highest in the most flexible substrate. Subsequently, the cardiotoxicity response of the cells on three different substrates was analyzed with verapamil. It was observed that the cells on rigid substrate were primarily affected by drug-induced toxicity, while the drug had a lesser impact on cells on the more flexible PDMS substrate. Evidently, the flexible substrate aided the maturation of cells and had lower drug toxicity, while the cells on PS could not fully mature. The assessment of cardiomyocytes using "Tracker" proved to be simple and reliable.

Formation of a Buffer Layer on Mica Substrate for Application to Flexible Thin Film Transistors (운모 기판을 플렉시블 다결정 실리콘 박막 트랜지스터에 적용하기 위한 버퍼층 형성 연구)

  • Oh, Joon-Seok;Lee, Seung-Ryul;Lee, Jin-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.115-120
    • /
    • 2007
  • Polycrystalline silicon (poly-Si) thin film transistors (TFTs) might be fabricated on the mica substrate and transferred to a flexible plastic substrate because mica can be easily cleaved into a thin layer. To overcome the adhesion and stress problem between poly-Si film and mica substrate, a buffer layer consisting of $SiO_x/Ta/Ti$ three layers has been developed. The $SiO_x$ layer is for electrical isolation, the Ti layer is for adhesion of $SiO_{x}$ and mica. and Ta is for stress relief between $SiO_x$ and Ti. A TFT was fabricated on the mica substrate by a conventional Si process and was successfully transferred to a plastic substrate.

The Laminating process for Single Substrate Flexible LCD

  • Bae, Kwang-Soo;Choi, Yoon-Seuk;Kim, Hak-Rin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1125-1128
    • /
    • 2007
  • The laminating technique for developing flexible liquid crystal display was demonstrated by using a thin UV curable polymer film and a plastic substrate with patterned polymer wall structure. We adopted the rigid wall structure to provide a solid mechanical support for the stable molecular alignment of liquid crystals (LCs) in the device. The cover film was prepared to have an ability of aligning LC molecules by patterning a micro-groove structure using the soft-lithographic process. These two substrates can be assembled tightly by the laminating and one-step UV irradiation process because of the adhesive nature of the used UV curable polymers. Proposed method can be used to fabricate the flexible LC display with simplicity and also be applicable for a cost-effective roll-to-roll process.

  • PDF

ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS USING FLEXIBLE SUBSTRATE (Flexible한 기판을 사용한 유기 박막 트랜지스터의 전기적 특성 연구)

  • Lee, Jong-Hyuk;Kang, Chang-Heon;Hong, Sung-Jin;Kwak, Yun-Hee;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1590-1592
    • /
    • 2002
  • In this work the electrical characteristics of organic TFTs using organic insulator and flexible polyester substrate have been investigated. Pentacene and PVP(polyvinylphenol) are used as an active semiconducting layer and dielectric layer respectively. Pentacene was thermally evaporated in vacuum at a pressure of about $1{\times}10^{-6}$ Torr and at a deposition rate of $0.5{\AA}$/sec, and PVP was spin-coated. Aluminium and gold were used for gate and source/drain electrodes. 0.1mm thick flexible polyester substrate was used instead of glass or silicon wafer.

  • PDF

Substrate-Assembling Technique using Adhesive Patterned Spacers for Flexible Liquid Crystal Displays

  • Kang, Jae-Hyun;Bae, Kwang-Soo;Yi, Seung-Woo;Kim, Jae-Hoon;Yu, Chang-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.218-220
    • /
    • 2009
  • We proposed an enhanced substrate-assembling technique using adhesive patterned spacers for flexible liquid crystal displays (LCDs). The negative photoresister was used for the rigid columnar spacers and the strong substrate-bonding agent. The proposed technique is expected to be a good candidate for manufacturing method of flexible LCDs.

  • PDF

Fabrication of Flexible CIGS thin film solar cells using Polyimide substrate (Polyimide 기판을 이용한 Flexible CIGS 박막 태양전지 제조)

  • Jung, Seung-Chul;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Kim, Do-Jin;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.153-155
    • /
    • 2009
  • In this study, we fabricated the $Cu(In,Ga)Se_2$ (CIGS) thin-film solar cells by using a polyimide substrate. The CIGS thin-film was deposited on Mo coated polyimide substrate by a 3-stage co-evaporation technique. Because the polyimide shows thermal transformation at about $400^{\circ}C$, the substrate temperature of co-evaporation process was set to below $400^{\circ}C$. Corresponding solar cell showed a conversion efficiency of 7.08 % with $V_{OC}$ of 0.58 V, $J_{SC}$ of 24.99 $mA/cm^2$ and FF of 0.49.

  • PDF

Flexible Ultra-high Gas Barrier Substrate for Organic Electronics

  • Yan, Min;Erlat, Ahmet Gun;Zhao, Ri-An;Scherer, Brian;Jones, Cheryl;Smith, David J.;McConnelee, Paul A.;Feist, Thomas;Duggal, Anil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.445-446
    • /
    • 2007
  • The use of plastic substrates enables new applications, such as flexible display devices, and other flexible electronic devices, using low cost, rollto-roll (R2R) fabrication technologies. One of the limitations of polymeric substrate in these applications is that oxygen and moisture rapidly diffuse through the material and subsequently degrade the electro-optical devices. GE Global Research (GEGR) has developed a plastic substrate technology comprised of a superior high-heat polycarbonate (LEXAN(R)) substrate film and a unique transparent coating package that provides the ultrahigh barrier (UHB) to moisture and oxygen, chemical resistance to solvents used in device fabrications, and a high performance transparent conductor. This article describes the coating solutions for polycarbonate (LEXAN(R)) films and its compatibility with OLED device fabrication processes.

  • PDF

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • Park, Ik-Jae;Park, Sang-Baek;Kim, Ju-Seong;Jin, Gyeong-Seok;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF