• Title/Summary/Keyword: Flexible multibody dynamic model

Search Result 48, Processing Time 0.019 seconds

Analysis for Lifting Design of a Floating Crane with Elastic Booms (붐(Boom)의 탄성을 고려한 해상 크레인의 리프팅 설계 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.5-11
    • /
    • 2011
  • In this paper, the dynamic response analysis of a floating crane with elastic booms and a cargo is performed. The objective is to consider the effects of the elastic boom in the lifting design stage. Governing equations of the motion for the system which consists of interconnected rigid and flexible bodies are derived based on the formulation of flexible multibody system dynamics. To model the boom as a flexible body, floating reference frame and nodal coordinates are used. Coupled surge, pitch, and heave motion of the floating crane with the cargo which has 3 degree of freedom is simulated by solving the equation numerically. Finally, the effects of the elastic boom for the lifting design that the floating crane is required to lift a heavy cargo are discussed by comparing the simulation result between with the elastic boom and with the rigid one.

  • PDF

Study of Spring Modeling Techniques for Kinematic and Dynamic Analysis of a Spring Operating Mechanism for the Circuit Breaker (회로차단기용 스프링조작기의 기구동역학 해석을 위한 스프링모델링 기법 연구)

  • Sohn, Jeong-Hyun;Lee, Seung-Kyu;Kim, Seung-Oh;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.777-783
    • /
    • 2007
  • Since the performance of the circuit breaker mainly depends on the spring operating mechanism, the analysis of the spring operating mechanism is required. The spring, especially closing spring, stores the deformation energy due to the compression and then accelerates the big loads rapidly in the circuit breaker. To accurately carry out the kinematic and dynamic analysis of the circuit breaker, the precise modeling of the spring behavior is necessary. In this paper, the static stiffness of the spring is captured by using the tester. A simple mechanism similar to the spring operating mechanism was designed to generate the release motion of the spring. A high speed camera was used to capture the behavior of the spring. Three types of spring models such as a linear spring model, modal spring model, and nodal spring model are suggested and compared with the experimental results.

Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway (자기부상열차/가이드웨이 동적상호작용 해석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1559-1565
    • /
    • 2013
  • This study aims to investigate the dynamic interaction characteristics between Maglev vehicles and an elevated guideway. A more detailed model for the dynamic interaction of the vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on prototyping, flexible guideway by a modal superposition method, and levitation electromagnets including the feedback controller into an integrated model. The proposed model was applied to an urban transit Maglev developed for a commercial application to analyze the dynamic response of the vehicle and guideway, and the effect of the surface roughness of the rail, mid-span guideway deflections, and air gap variations are then investigated from the numerical simulation.

Flexible Multibody Dynamic Analysis of the Wiper System for Automotives (자동차 와이퍼 시스템의 유연 다물체 동역학 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Cheong, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.175-181
    • /
    • 2010
  • This paper presents the dynamic analysis method for estimating the performance of flat-type blades in wiper systems. The blade has nonlinear characteristics since the rubber is a hyper-elastic material. Thus, modal coordinate and absolute nodal coordinate formulations were used to describe the dynamic characteristic of the blade. The blade was structurally analyzed to find the bending characteristics of the cross section of the blade. According to the analysis results, the blade section is divided into three deformation bodies: rigid, small, and large. For the small deformation body, the modal coordinate formulation is used, while the absolute nodal coordinate formulation is used for the large deformation body. To verify the dynamic analysis result, an experiment was performed. The simulation and experiment results were compared to verify the flexible multi-body dynamic model.

Numerical Analysis for Nonlinear Static and Dynamic Responses of Floating Crane with Elastic Boom (붐(Boom)의 탄성을 고려한 해상크레인의 비선형 정적/동적 거동을 위한 수치 해석)

  • Cha, Ju-Hwan;Park, Kwang-Phil;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.501-509
    • /
    • 2010
  • A floating crane is a crane-mounted ship and is used to assemble or to transport heavy blocks in shipyards. In this paper, the static and dynamic response of a floating crane and a heavy block that are connected using elastic booms and wire ropes are described. The static and dynamic equations of surge, pitch, and heave for the system are derived on the basis of flexible multibody system dynamics. The equations of motion are fully coupled and highly nonlinear since they involve nonlinear mass matrices, elastic stiffness matrices, quadratic velocity vectors, and generalized external forces. A floating frame of reference and nodal coordinates are employed to model the boom as a flexible body. The nonlinear hydrostatic force, linear hydrodynamic force, wire-rope force, and mooring force are considered as the external forces. For numerical analysis, the Hilber-Hughes-Taylor method for implicit integration is used. The dynamic responses of the cargo are analyzed with respect to the results obtained by static and numerical analyses.

Study on the Levitation Stability of Maglev Vehicle considering the Vibration of Steel Switch Track (강재 분기기의 진동을 고려한 자기부상열차 부상안정성 연구)

  • Han, Jong-Boo;Park, Jinwoo;Han, Hyung-Suk;Lee, Jong-Min;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.175-185
    • /
    • 2015
  • Generally, in the train area, switch tracks have required high reliability because this system is directly associated with derailment. Especially, switch tracks of Maglev vehicles must be moved in terms of the whole geometric characteristics, in which the bogies are encased in the switch track. For this reason, switch track was constructed with steel lighter than concrete girders. But, the steel switch track was weak because of structural vibration as well as structural deformation. Therefore, it is important to predict the levitation stability when a vehicle passes over flexible switch track. The aims of this paper are to develop a coupled dynamic model to describe the relationship between a Maglev vehicle and switch track and to predict the levitation stability. In order to develop the coupled dynamic model, a three dimensional vehicle model was developed based on multibody dynamics; a switch model was made using the modal superposition method. And, the developed model was verified using comparison measured data.

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

A Study on Efficiency Improvement of the Catenary-Pantograph Dynamic Interaction Analysis Program using Shift Forward Method (Shift Forward 방법을 이용한 가선계-판토그래프 동적 상호작용 해석 프로그램의 효율성 향상에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.572-578
    • /
    • 2012
  • In the electric railway vehicles, securing stable current collection performance is an important factor which determines the quality of operation and the maximum speed. In order to predict such current collection performance, various analysis methods have been proposed for a long time. Also, investigations for improving the accuracy of the results and the efficiency of the analysis process have been performed. In this paper, a method for the efficiency improvement has been proposed. This method is based on the basic concept that the system equations of motion of a catenary numerical model include only interactive range with a pantograph. In this paper, an algorithm and generalized process for applying proposed method are introduced. Also, validity of the results and utility of the method was verified and studied.