• Title/Summary/Keyword: Flexible method

Search Result 2,795, Processing Time 0.031 seconds

Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator (슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어)

  • 최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.

Dynamic modeling and system identification for a MMAM controlled flexible manipulator

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.592-598
    • /
    • 1992
  • For a high bandwidth, accurate end of arm motion control with good disturbance rejection, the, Momentum Management Approach to Motion control (MMAM) is proposed. The MMAM is a kind of position control technique that uses inertial forces, applied at or near the end of arm to achieve, high bandwidth and accuracy in movement and in the face of force disturbances. To prove the concept of MMAM, the, end point, control of a flexible manipulator is considered. For this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached on the top of the flexible beam. A mathematical model is developed for the flexible, beam being controlled by the, MMAM actuator and slide base DC motor. A system identification method is applied to estimate some system parameters in the, model which can not be determined because of the complexity of the mechanism. For the end point, control of the. flexible beam, the, optimal linear output feedback control is introduced.

  • PDF

Dynamic Characteristic Analysis of a Flexible Beam Actuated by Moving Coil and DC Motor (가동 코일 및 DC Motor로 작동되는 유연한 빔의 운동 특성 해석)

  • Yu, Hwajoon;Jeong, Wontaick;Nam, Yoonsu
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.15-23
    • /
    • 1999
  • Active damping system is generally used for the vibration suppression and precise motion control for the flexible structure. This application can be easily found on the space structure and driving mechanism of optical storage devices. Although a control system using the flexible structure has many advantages over using rigid mechanism in driving energy saving, system weights, and etc., more complex and precise control strategies are required. A position control system using flexible structure and the concept of active damper is designed and manufactured, which is driven by slide DC motor and moving coil motor located at the tip of the flexible beam. Dynamic characteristics of this system are investigated by analytic and experimental ways. By the comparison of those two results, a nominal reference model for this system is proposed.

  • PDF

Dynamic Response Control of a Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 유연날개 동적 응답 제어)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.522-527
    • /
    • 2013
  • In this study, dynamic response control of a flexible wing such as gust loads alleviation using sliding mode control method is presented. To achieve this purpose, trailing edge control surface of a flexible wing is used as control means generating the aerodynamic control force. Aeroservoelastic CASE) model consisting of aeroelastic plant, control surface actuator model, and gust model depicting the atmospheric turbulence is formulated in the state space. A sliding mode controller based on the estimated state vector is designed for active dynamic response control of flexible wing aeroservoelastic model. The performance of the controller designed is demonstrated via numerical simulation for the representative flexible wing model under atmospheric turbulence loading.

  • PDF

Development of a Flexible Incremental Forging Process to Manufacture Asymmetric Shafts (비대칭 축류형 제품의 점진성형공정 개발)

  • Altun A. O.;Lee S. R.;Hong J. T.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.95-98
    • /
    • 2005
  • Shafts having asymmetry or odd number of symmetry in the cross-section can not be simply manufactured by conventional incremental radial forging. In order to manufacture such shafts, the new concept of incremental forging with one punch and a flexible fixture is developed by suggesting a flexible fixture, instead of two opposed punches used in radial forging, so that the flexible fixture only supports the workpiece while the punch is moving during forming. A new flexible fixture is designed using the steel shots and vacuum technology. An equilateral triangular cross-section is selected as the sample shape to be manufactured by the proposed manufacturing method. The desired triangular cross-sectional shaft is manufactured with the errors of $3.0\%$.

  • PDF

Exact Reshaping of Motor Dynamics in Flexible-Joint Robot using Integral Manifold Feedback Control (유연관절로봇의 모터 동역학을 정확하게 재설정하기 위한 적분매니폴드 피드백제어 개발)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • In this paper, an exact reshaping method for the motor dynamics of a flexible-joint robot is proposed using an integral manifold approach. Obtaining the exact model for both motor-side and link-side dynamics of a flexible-joint robot is difficult due to its under-actuated nature and complex dynamics. Despite the simple structure of the motor-side dynamics, they are difficult to model accurately for a flexible-joint robot due to motor disturbances, especially when speed reducers such as harmonic drives are installed. An integral manifold feedback control (IMFC) is proposed to reshape the motor dynamics. Based on the integral manifold approach, it is theoretically proved that the IMFC reshapes motor dynamics exactly even with bounded disturbances such as motor friction. The performance of the proposed IMFC is verified experimentally using a single degree-of-freedom flexible-joint robot under gravity conditions.

A Study on End-effector Friction of Constrained Spatial Flexible Manipulator (구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

The vibration control of Flexible Manipulator using Parallel Fuzzy controller and Reference Trajectory Command (병렬퍼지 제어기와 기준궤적신호를 이용한 유연한 매니퓰레이터의 진동제어)

  • 박양수;박윤명
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A fuzzy control strategy is described which is utilized to control the joint angle and tip deflection in single flexible manipulator. In this paper, an existing model for a single flexible manipulator is used for the initial development of an FLC. One FLC is designed to govern the joint angle of the manipulator as it is rotated from one position to another, and the second FLC is designed to attenuate the tip deflection which result from joint angle body motion. Reference Trajectory Command is an important method to reduce vibration in flexible beam. This paper presents a very simple command control shaping which eliminates multiple mode residual vibration in a flexible beam combined parallel fuzzy controller. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

Developement of A Flexible Rotating Beam Test Bed for Experimental Varification (회전 유연 외팔보 진동 시뮬레이션 검증을 위한 테스트 베드 구축)

  • Kang, Youn-Jun;Kim, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.534-539
    • /
    • 2000
  • A flexible rotating beam test bed has been developed for experimental verification of flexible rotating beam dynamics and vibration. It consists of a flexible arm, harmonic driver reducer, ac servo motor and DSP board with PC. To capture the motion induced stiffening effects of the flexible rotating beam, substructuring model has been established in multibody dynamics simulation. Substructuring model provides better results comparing with experimental data.

  • PDF

A Study on the Design of Prestressed Die using Flexible Tolerance Method (플렉시블 허용오차법을 이용한 예압된 금형 설계에 관한 연구)

  • Hur, K.D.;Choi, Y.;Yeo, H.T.
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.116-122
    • /
    • 2003
  • In the Prestressed die design for cold working, many constraining conditions should be considered to insure the die safety and to improve the dimension accountancy products. Among the constraining conditions, yielding conditions, diameter ratios and interferences between rings are very important. . In this paper, therefore, flexible tolerance method was used in order to search the optimum values of design variables. The maximum inner pressure is used as objective function in this numerical analysis. In the design Process, it was also involved the safety factor to the yield strength of each ring by considering the allowable tensile or compressive hoop stress in each ring. The proposed technique has been applied to the die design of backward extrusion process, and it's analytical results have been compared with that of the conventional design method.