• Title/Summary/Keyword: Flexible method

Search Result 2,795, Processing Time 0.034 seconds

A study on the Modeling for Rotors Control with Dynamics Analysis S/W (동역학 S/W와 연계한 회전체 제어의 모델링에 관한 연구)

  • Lee W.C.;Kim S.W.;Kim J.S.;Park H.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.906-909
    • /
    • 2005
  • This study provides the method to build the rotor system model using dynamic analysis software. also, it introduces the traditional methods of the rotor system modeling and informs the each merits and demerits. We will make up the flexible system of rotor system model with ADAMS, multi-body dynamics S/W, in order to develop dynamics model and get the response of plant model near to real model through connection the SIMULINK of MATLAB. We will develop the computing dynamics-controling model possible controlled simulation similar to a real model with controlling the plant model.

  • PDF

Computer Simulation for Analysis of Flexible Manufacturing Systems (자동생산시스템의 분석을 위한 컴퓨터 시뮬레이션)

  • Cho, Kyu-Kab;Oh, Soo-Cheol;Lee, Moon-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.76-90
    • /
    • 1986
  • This paper discusses the analysis of flexible manufacturing systmes design using computer simulation method. The simulation language employed is SIMAN which is a powerful tool to model flexible manufacturing systems. The important characteristics of FMS, its design and operational problems, and structures based on the number of NC machine tools and their layout are discussed for the appli- cations of FMS to manufacturing. A new algorithm for forming part families and machine groups has been proposed and its software is also developed. Simulation procedure using SIMAN for analysis of FMS designs is discussed and two design problems are analyzed and evaluated to illustrate systemstic procedure for analysis of FMS.

  • PDF

Mechanical Model of Displacement-based Time Domain Transmitting Boundary for Flexible Dam-Reservoir Interactions (유연한 댐-호소의 상호작용을 위한 변위 기초 시간 영역 전달 경계의 역학적 모델)

  • 이진호;김재관;조정래
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.232-237
    • /
    • 2003
  • A new displacement-based transmitting boundary is developed for the transient analysis of dynamics interactions between flexible dam body and reservoir impounding compressible water The mechanical model is derived analytically in time domain from the kernel function, Bessel function, appearing in the convolution integral and corresponding mechanical model is developed that consists of mass, damping and stiffness matrices. The resulting system of, equations uses displacement degrees of freedom. Hence it can be coupled directly with the displacement-based solid finite element model of dam body, linear of nonlinear. The method was applied to the rigid and flexible dam models. The results showed very good agreement : with the semi-analytic frequency domain solutions.

  • PDF

Distributed Flexible Tactile Sensor System Using Piezoelectric Film

  • Yoon, Myoung-Jong;Yu, Kee-Ho;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.4-61
    • /
    • 2001
  • This research is the development of a distributed flexible tactile sensor for service robots using PVDF (polyvinylidene fluoride) film for the detection of the contact state in real time. The tactile sensor which has 8$\times$8 taxels is fabricated using PVDF film and flexible circuitry. The proposed fabrication method is simple and easy to make the sensor in the laboratory without using any special equipment. Experimental results on static and dynamic properties are obtained. In order to investigate the properties of the sensor, the sensor output to the arbitrary forces and frequencies are measured using the shaker with the force sensor.

  • PDF

Numerical Analysis of Orthotropic Composite Propellers (직교이방성 복합소재 프로펠러 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Ruy, Won-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.377-386
    • /
    • 2019
  • Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.

A Development of High-Durability Copper Foil Materials for Clock Spring Cable Using Grain Size Control Techniques (결정립 제어 기술을 이용한 클락스프링 케이블용 고내구 동박 소재 개발)

  • Chae, Eul Yong;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.20-25
    • /
    • 2021
  • Flexural resistance evaluation of FFC (Flexible Flat Cable) was performed according to the grain size of rolled copper foil by adding 0.1wt% silver (Ag) and electrodeposited copper foil by slitting method after heat-treatment. These methods are aimed at enhancing the flexural durability of the FFC by growing the grain size of copper foil. By increasing the grain size of the copper foil and minimizing the miss-orientation at grain boundaries, the residual stress at the grain boundaries of the copper foil is reduced and the durability of the FFC is improved. Maximizing an average grain size of copper foil can be got a good solution in order to enhance the durability of the FFC or FPCB (Flexible Printed Circuit Board).

A Study on a Robust Motion Control of Flexible Manipulator with Five Joint for Untact Working in Filed Work-site

  • Kim, Hee-Jin;Kim, Seong-Il;Jang, Gi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.161-168
    • /
    • 2022
  • This study proposed a new approach to impliment a robusut control of comsumer-friendly flexible manipulator with five joint for untact working in filed work-site. The output redefinition approach was used to overcome the non minimum phase characteristic of the system. The new output is defined so that the zero dynamics related to this output are stable. The control strategy is based on an computed torque method which is applicable to a class of time-invariamt phase linear systems whose uncertainties appear in output loop stable. The controller is composed of a stabilizing joint controller and an output redefinition tracking controller. Experimental results are also presented to verify the effectiveness of the proposed control scheme.

Control of Flexible Link using Mixed $H_2$/H$\infty$ and $\mu$-Synthesis Method

  • Y.W. Choe;Lee, H.K.;J.I. Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.95.3-95
    • /
    • 2001
  • This paper investigates the simultaneous use of mixed H2/H_inf and mu-synthesis design methodology to design a robust controller for flexible link. We adopt four steps to design control system as follows: Step 1 : Generally, there are differences between the nominal and real model, so we consider the plant as a combination of parametric model uncertainty and unstructured uncertainty represents real structural uncertainties associated with the damping ratios of the flexible modes retained in the nominal model without payload. denotes the uncertainty which is due to the payload added at the tip. Step 2 : We adopt the mixed H2/H_inf theory to design a feedback controller K(s) by using the model uncertainty ...

  • PDF

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Development of Contact Force Measurement Algorithm for a 3D Printing-type Flexible Tactile Sensor (3D 프린팅 방식 유연 촉각센서의 접촉력 측정 알고리즘 개발)

  • Jeong, Kyeong-Hwa;Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Flexible tactile sensors can provide valuable feedback to intelligent robots regarding the environment around them. This is especially important when robots such as, service robots share a workspace with humans. This paper presents a contact force measurement algorithm of a flexible tactile sensor. This sensor is manufactured by a direct-writing technique, which is one 3D printing method, using multi-walled carbon nano-tubes. An analog signal processing circuit has been designed and implemented to reduce noise contained in the sensor output. In addition, a digital version of the Butterworth filter was implemented by software running on a microcontroller. Through various experiments, characteristics of the sensor system have been identified. Based on three traits, an algorithm to detect the contact and measure the contact force has been developed. The entire system showed a promising prospect to detect the contact over a large and curved area.