• Title/Summary/Keyword: Flexible fluoride

Search Result 42, Processing Time 0.039 seconds

Designing Flexible Thin Film Audio Systems Utilizing Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.16-18
    • /
    • 2013
  • In this paper, we develop a method to design a flexible thin film audio systems utilizing Polyvinylidene fluoride. The system we designed showed the properties of increased transparency and sound pressure levels. As an input terminal transparent oxide thin film is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double -layered structure. In the range of visible light, the output from the output of the system showed an increased and improved sound pressure level. The piezoelectric polymer film of polyvinylidene fluoride (PVDF) is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

Development of diverse fluorides source for applicable F-18 radiofluorination method

  • Park, Su Hong;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • Alkali metal fluoride sources (MFs) such as potassium fluoride (KF) have been widely used as a fluoride source in the nucleophilic displacement reaction. However, they have low solubility and nucleophilicity in most of the organic solvents. Bulky fluoride sources such as tetrabutylammonium fluoride (TBAF) were substituted for MFs to improve these properties. However, hygroscopic property of TBAF makes it less convenient for handling as well as its strong basic property can make the side-reaction occur. Recently, novel fluoride sources have been developed to solve these problems. In this paper, we would like to introduce coordinated fluoride sources as a new fluoride sources such as tetrabutylammonium tetra(t-butyl alcohol)-coordinated fluoride, crown ether metal complex fluoride, and various bulky alcohols coordinated fluoride complexes. In particular, bulky alcohol coordinated fluoride source could generated by the controlled hydrogen-bonded of fluoride with alcohols and these fluoride sources have better stability and reactivity with showing low hygroscopic property. The study of these fluoride sources will help to understand the characteristic of [$^{18}F$]fluoride for increasing the radiochemical yield in the [$^{18}F$]radiofluorination.

Development of an Array-Type Flexible Tactile Sensor Using PVDF and Flexible Circuitry

  • Kwon, Tae-Kyu;Yu, Kee-Ho;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.200-208
    • /
    • 2002
  • This paper represents the development of an array-type flexible tactile sensor using PVDF(polyvinylidene fluoride) film and flexible circuitry. The tactile sensor which has $8{\times}8$ taxels is made by using PVDF film and FPC(flexible printed circuit) technique. Experimental results on static and dynamic properties are obtained by applying arbitrary forces and frequencies generated by the shaker. In the static characteristics, the threshold and the linearity of the sensor are investigated. Also dynamic response of the sensor subjected to the variable frequencies is examined. The signals of a contact force to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. Finally, the signals are integrated for taking the force profile. The processed signals of the outputs of the sensor are visualized on a personal computer, the shape and force distribution of the contacted object are obtained using two and three-dimensional image in real time. The reasonable performance for the detection of contact state is verified through the experiment.

Novel organic catalysts for nucleophilic fluorination including F-18 radiofluorination

  • Na, Hyeon Su;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.116-121
    • /
    • 2017
  • To overcome the low reactivity and solubility of alkali metal fluorides (MFs), various types of phase transfer catalysts (PTCs) have been developed over the last decades. However, since the fluoride activated by such PTC sometimes has a strong basicity, it may cause various side reactions such as elimination reaction or hydroxylation reaction in the nucleophilic fluorination reaction. Also, they may cause separation problems in the compound purification process. In recent advanced study, various PTCs have been developed to solve these problem of conventional catalyst. In this review, we would like to introduce three kinds of novel multifunctional organic catalysts such as bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA), easy separable pyrene-tagged ionic liquid (PIL) by reduced graphene oxide (rGO), and tri-tert-butanolamine organic catalyst.

Flexible Antenna Radiator Fabricated Using the CNT/PVDF Composite Film (CNT/PVDF 복합막을 이용한 유연소자용 안테나 방사체)

  • Kim, YongJin;Lim, Young Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.196-200
    • /
    • 2015
  • In this paper, we fabricated flexible antenna radiator using the CNT/PVDF (carbon nanotube / polyvinylidene fluoride) composite film. We used polymer film as a matrix material for the flexible devices, and introduced CNTs for adding conductivity into the film resulting in obtaining performances of the antenna radiator. Spray coating method was used to form the CNT/PVDF composite radiator, and pattern formation of the radiator was done by shadow mask during the spray coating process. We investigated the electrical properties of the CNT/PVDF composite films with the CNT concentration, and also estimated the radiator performance. Finally we discuss the feasibility of the CNT/PVDF composite radiator for the flexible antenna.

Distributed Flexible Tactile Sensor (분포형 유연촉각센서)

  • 유기호;윤명종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • A flexible tactile sensor away with 8 H 8 tactile elements is designed and fabricated. The material of the sensor is PVDF(polyvinylidene fluoride) film and flexible circuitry is used in the fabrication fur the flexibility of the sensor The experimental results on static and dynamic properties of the sensor are obtained and examined. The signals of a contact pressure to the sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. The processed signals of the sensor outputs are visualized in a personal computer for illustrating the shape and force distribution of a contact object. The reasonable performance for the detection of contact state is verified through sensing examples.

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

  • Nguyen, Duc-Nam;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.205-215
    • /
    • 2019
  • A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

Development of Flexible Tactile Sensor Array

  • Kim, Hyungtae;Kwangmok Jung;Lee, Kyungsub;Jaedo Nam;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.6-97
    • /
    • 2002
  • In this paper, we present an arrayed flexible tactile sensor, which can detect contact normal forces as well as positions. The tactile sensor is developed using Polyvinylidene Fluoride (PVDF) that is known as piezoelectric polymer, and the surface electrode is fabricated using silk-screening technique with silver. We develop a charge amplifier in order to amplify the small signal from the sensor, and a fast signal processing unit by using a DSP chip. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In the future, the developed sensor is applied to a dexterous robotic hand...$\textbullet$ Tactile sensing, PVDF, Robot hand

  • PDF

Distributed Flexible Tactile Sensor System Using Piezoelectric Film

  • Yoon, Myoung-Jong;Yu, Kee-Ho;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.4-61
    • /
    • 2001
  • This research is the development of a distributed flexible tactile sensor for service robots using PVDF (polyvinylidene fluoride) film for the detection of the contact state in real time. The tactile sensor which has 8$\times$8 taxels is fabricated using PVDF film and flexible circuitry. The proposed fabrication method is simple and easy to make the sensor in the laboratory without using any special equipment. Experimental results on static and dynamic properties are obtained. In order to investigate the properties of the sensor, the sensor output to the arbitrary forces and frequencies are measured using the shaker with the force sensor.

  • PDF

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF