Browse > Article
http://dx.doi.org/10.5369/JSST.2019.28.4.205

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices  

Nguyen, Duc-Nam (Department of Mechanical Engineering, Pohang University of Science and Technology)
Moon, Wonkyu (Department of Mechanical Engineering, Pohang University of Science and Technology)
Publication Information
Journal of Sensor Science and Technology / v.28, no.4, 2019 , pp. 205-215 More about this Journal
Abstract
A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.
Keywords
polyvinylidene fluoride; EpCA electrospinning; energy harvesting device; microfiber-based composite; piezoelectric polymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.-N Nguyen, S. M. Yu, and W. Moon, "Electrospinning of poly(${\gamma}$-benzyl-${\alpha}$,L-glutamate) microfibers for piezoelectric polymer applications", J. Appl. Polym. Sci., Vol. 135, No. 27, p. 46440, 2018.   DOI
2 A. Nazir, N. Khenoussi, L. Schacher, T. Hussain, and A. H. Hekmati, "Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning", RSC Adv., Vol. 5, No. 94, pp. 76892-76897, 2015.   DOI
3 C. M. Wu, C. Hsu, C. Su, C. Liu, and J. Lee, "Optimizing parameters for continuous electrospinning of polyacrylonitrile nanofibrous yarn using the Taguchi method", J. Ind. Text., Vol. 48, No. 3, pp. 559-579, 2017.   DOI
4 R. K. Roy, Design of experiments using the Taguchi approach, John Wiley & Sons, New Jersey, USA, 2001.
5 S. J. Tuck, M. K. Leach, Z. Feng, and J. M. Corey, "Critical variables in the alignment of electrospun PLLA nanofibers", Mater. Sci. Eng. C, Vol. 32, No. 7, pp. 1779-1784, 2012.   DOI
6 D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W. Wilson, J. E. West, and S. M. Yu, "Permanent polarity and piezoelectricity of electrospun alpha-helical poly(alpha-amino acid) fibers", Adv Mater., Vol. 23, No. 34. pp. 3954-3968, 2011.   DOI
7 S. Debarun, K. Prakash, S. H. Chen, J. M. Miao, C. Y. Kwok, M. S. Triantafyllou, M. E. Warkiani, and M. Asadnia, "Characterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applications", AIP Adv., Vol. 7, No. 10, pp. 105205(1)-105205(7), 2017.
8 M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, "Thicknessdependent mechanical properties of polydimethylsiloxane membranes", J. Micromech. Microeng., Vol. 19, No. 3, pp. 035028(1)-035028(4), 2009.   DOI
9 Y. Xin, X. Qi, H. Tian, C. Guo, X. Li, J. Lin, and C. Wang, "Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers", Mater. Lett., Vol. 164, pp. 136-139, 2016.   DOI
10 N. Shehata, E. Elnabawy, M. Abdelkader, A. H. Hassain, M. Salah, R. Nair, and S. A. Bhat, "Static-Aligned Piezoelectric Poly (Vinylidene Fluoride) Electrospun Nanofibers/ MWCNT Composite Membrane: Facile Method", Polymers, Vol. 10, No.9, pp. 965(1)-965(11), 2018.   DOI
11 A. Chinnappan, J. K. Y. Lee, W. A. D. M. Jayathilaka, and S. Ramakrishna, "Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method", Int. J. Hydrog. Energy, Vol. 43, No. 2, pp. 721-729, 2018.   DOI
12 J. Nunes-Pereira, V. Sencadas, V. Correia, J. G. Rocha, and S. L. Mendez, "Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites", Sens. Actuator A-Phys., Vol. 196, pp. 55-62, 2013.   DOI
13 J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, "Piezoelectric actuation of direct-write electrospun fibers", Sens. Actuator A-Phys., Vol. 164, No. 2, pp. 131-136, 2010.   DOI
14 Z. Liu, C. Pan, Z. Ou, and W. Wang, "Piezoelectricity of Well-Aligned Electrospun Fiber Composites", IEEE Sens. J., Vol. 13, No. 10, pp. 4098-4103, 2013.   DOI
15 G. Ren, F. Cai. B. Li, J. Zheng, and C. Xu, "Flexible Pressure Sensor Based on a Poly(VDF-TrFE) Nanofiber Web", Macromol. Mater. Eng., Vol. 298, No. 5, pp. 541-546, 2013.   DOI
16 H. Y. Son, J. S. Park, J. Huang, J. Kim, Y. S. Nam, and W. S. Kim, "Flexible Fibrous Piezoelectric Sensors on Printed Silver Electrodes", IEEE Trans. Nanotechnol., Vol. 13, No. 4, pp. 709-713, 2014.   DOI
17 C. T. Pan, K. C. Tsai, S. Y. Wang, C. K. Yen, and Y. L. Lin, "Large-Area Piezoelectric PVDF Fibers Fabricated by Near-Field Electrospinning with Multi-Spinneret Structures", Micromachines, Vol. 8, No. 4, pp. 97(1)-97(16), 2017.   DOI
18 C. M. Wu, M. H. Chou, and W. Y. Zeng, "Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/ Carbon Nanotube Nanofibrous Membranes", Nanomaterials, Vol. 8, No. 6, pp. 420(1)-420(), 2018.   DOI
19 L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J. A. Rogers, "High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)", Nat Commun., Vol. 4, pp. 1633(1)-1633(10), 2013.   DOI
20 A. B. Amar, A. B. Kouki, Hung Cao, "Power Approaches for Implantable Medical Devices", Sensors, Vol. 15, No. 11, pp. 28889-914, 2015.   DOI
21 Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin, and Y. Xie, "Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features", Sensors, Vol. 18, No. 2, pp. 645(1)-645(35), 2018.   DOI
22 C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency", Nano Lett., Vol. 10, No. 2, pp. 726-731, 2010.   DOI
23 T. Lei, L. Yu, G. Zheng, L Wang, D. Wu, and D. Sun, "Electrospinning-induced preferred dipole orientation in PVDF fibers", J. Mat. Sci., Vol. 50, No. 12, pp. 4342-4347, 2015.   DOI
24 L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, "Properties and Applications of the ${\beta}$ Phase Poly(vinylidene fluoride)", Polymers, Vol. 10, No. 3, pp. 228(1)-228(27), 2018.   DOI
25 J. Hu, Y. Zhu, H. Zhang, Y. Gu, and X. Yang, "Mixed effect of main electrospinning parameters on the ${\beta}$-phase crystallinity of electrospun PVDF nanofibers", Smart Mater. Struct., Vol. 26, No. 8, pp. 085019(1)-085019(9), 2017.   DOI
26 Y. Ding, Y. Duan, and Y. An Huang, "Electrohydrodynamically Printer, Flexible Energy Harvester Using In Situ Poled Piezoelectric Nanofibers", Energy Technol., Vol. 3, No. 3, pp. 351-358, 2015.   DOI
27 P. Martin, A.C. Lopes, and S. Lanceros-Mendez, "Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications", Prog. Polym. Sci., Vol. 39, No. 4, pp. 683-706, 2014.   DOI
28 L. S. Carnell, E. J. Siochi, R. A. Wincheski, N. M. Holloway, and R. L. Clark, "Electric field effects on fiber alignment using an auxiliary electrode during electrospinning", Scr. Mater., Vol. 60, No. 6, pp. 359-361, 2009.   DOI
29 Y. Ishii, H. Sakai, and H. Murata, "A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers", Mater. Lett., Vol. 62, No. 19, pp. 3370-3372, 2008.   DOI
30 M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, "Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes", Sci. Technol. Adv. Mater., Vol. 13, No. 3, pp. 035008(1)-035008(8), 2012.   DOI
31 F. Dabirian, S. A. H. Ravandi, A. R. Pishevar and R. A. Abuzade, "A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems". J. Electrostat., Vol. 69, No.6, pp. 540-546, 2011.   DOI
32 G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, and L. Lin, "Precision deposition of a nanofibre by near-field electrospinning". J. Phys. D, Vol. 43, No. 41, pp. 415501(1)-415501(6), 2010.   DOI
33 J. Lee, S. Y. Lee, J. Jang, Y. H. Jeong, and D. W. Cho, "Fabrication of patterned nanofibrous mats using direct-write electrospinning", Langmuir, Vol. 28, No.18, pp. 7267-7275, 2012.   DOI
34 P. Kiselev and J. Rosell-Llompart, "Highly aligned electrospun nanofibers by elimination of the whipping motion", J. Appl. Polym. Sci., Vol. 125, No. 3, pp. 2433-2441, 2012.   DOI
35 D. Sun, C. Chang, S. Li, and L. Lin, "Near-Field Electrospinning", Nano Lett., Vol. 6, No. 4, pp.839-842, 2006.   DOI
36 D.-N Nguyen, Y. Hwang, and W. Moon, "Electrospinning of well-aligned fiber bundles using an End-point Control Assembly method", Eur. Polym. J., Vol.77, pp. 54-64, 2016.   DOI