• 제목/요약/키워드: Flexible dynamics

검색결과 406건 처리시간 0.03초

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

Time Delay Control of Sway and Skew of the Spreader Suspended by Four Flexible Cables

  • Lee, Jeong-Woo;Kim, Doo-Hyeong;Park, Kyeong-Taik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.540-545
    • /
    • 2004
  • This article describes the time delay control of the 3-dimensional motion of the container cranes used in dockside container terminals. The container is suspended by four flexible cables via spreader, and due to the disturbances such as the wind and acceleration of cranes, the container undergoes translational(sway) and rotational position errors. And due to the uncertainty of weight and rotational inertia, accurate position control of container crane is difficult to realize. This paper, based on the analysis of 3-dimensional dynamics of container moving systems, develops time delay control algorithm [1]. The developed control algorithm is shown effective in controlling the container position in the presence of gust and parameter uncertainties.

  • PDF

Preliminary optimal configuration on free standing hybrid riser

  • Kim, Kyoung-Su;Choi, Han-Suk;Kim, Kyung Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.250-258
    • /
    • 2018
  • Free Standing Hybrid Riser (FSHR) is comprised of vertical steel risers and Flexible Jumpers (FJ). They are jointly connected to a submerged Buoyancy Can (BC). There are several factors that have influence on the behavior of FSHR such as the span distance between an offshore platform and a foundation, BC up-lift force, BC submerged location and FJ length. An optimization method through a parametric study is presented. Firstly, descriptions for the overall arrangement and characteristics of FSHR are introduced. Secondly, a flowchart for optimization of FSHR is suggested. Following that, it is described how to select reasonable ranges for a parametric study and determine each of optimal configuration options. Lastly, numerical analysis based on this procedure is performed through a case study. In conclusion, the relation among those parameters is analyzed and non-dimensional parametric ranges on optimal arrangements are suggested. Additionally, strength analysis is performed with variation in the configuration.

유연한 로보트 팔의 동적 모우드 제어 (Dynamic Mode Control of Flexible Robotic Arm)

  • 박세승;박종국
    • 전자공학회논문지B
    • /
    • 제30B권9호
    • /
    • pp.36-44
    • /
    • 1993
  • In the development of a high speed and light weight manipulator, it is necessary to consider the flexibility of a robotic arm. The infinite dynamics must be analyzed to obtain the finite mode modeling to achieve the feasible controller design of the robotic arm. The modeling procedures of the flexible robot arm, and natural frequencies and mode shapes by the constrained and unconstrained mode method are illustrated. The transfer function of the robot arm with a payload is also shown. The controller is designed by the pole assignment and optimal control theory to compensate for the unmodelled dynamic effects to the low order system. Also, the pole assignment method involving the harmonic vibration mode is presented through computer simulation.

  • PDF

폐쇄연쇄계를 갖는 탄성 다물체계의 효율적인 조인트반력 해석 (Analysis of joint reaction forces of flexible multibody system with closed loops)

  • 최용철;김광석;김외조;유완석
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.704-713
    • /
    • 1998
  • The analysis of dynamic forces is essential to the design of systems, stress analysis, or life prediction of part of machine. Calculation of dynamic forces has very close relations with multibody dynamics algorithm. In this paper, an algorithm which calculates joint reaction force/moment of flexible multibody dynamic systems is proposed by using inverse dynamic algorithm and velocity transformation technique.

붐의 유연성을 고려한 트럭크레인의 설계 전용 동력학 해석 프로그램 개발 (Development of Truck Crane Analysis Program with Boom Flexibility)

  • 박찬종
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.28-35
    • /
    • 1998
  • Computer simulation technique has been applied on the various engineering fields to reduce cost and development period. On this paper, we introduce a crane analysis program. Using this program, we can predict reaction force of each part or supporting force of truck crane on a personal computer system with out exclusive knowledge of multi-body dynamics. In order to consider the effect of boom flexibility according to each working condition, flexible dynamic theory is applied to the program. Actual crane model is analyzed on special work condition using this program and the results are compared with those of rigid boom model.

  • PDF

3 축 나노 스테이지 동특성 해석 및 개선 (Analysis and Improvement of Dynamics Characteristic of 3-axis Nano Stage)

  • 김충;이강녕;이동주;이문구;최형길;이석원;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.555-558
    • /
    • 2005
  • The precision positioning system requires robust design to obtain enough bandwidth. Therefore, The sub-resonance occurred by the disaccord of force center and mass center should be oppressed. And it is necessary to move the flexible mode to a higher frequency. In this paper, the 3-axis nano stage was proposed and dynamic characteristics was improved by design of experiments (DOE).

  • PDF

TIME DELAYED CONTROLLER를 이용한 유압 시스템의 위치 제어

  • 진성무;현장환;이정오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.204-208
    • /
    • 2001
  • Position control of the electro-hydraulic servo indexing system in a flexible forging machine was investigated Flexible forging machine forges an axial type workpiece in the radial direction as well as in the axial direction. The role of the indexing system is to rotate a workpiece fast and accurately to a desired position for continuous shaping. Since the inertia of a workpiece changes during each forging step, a control technique which is robust to inertia variation should be adopted to the position control of the workpiece. In this study, time delayed control technique is applied to the servo system. Time delayed control method does not depend on estimation of specific parameters. Rather, it depends on the direct estimation of a function representing the effect of uncertainties. Direct estimation is accomplished using time delay and the gathered information is used to cancel the unknown dynamics is accomplished using disturbances simultaneously. Experimental result show that the time delayed controller is robust to inertia variation of the load, and satisfactory performance on the sposition accuracy is obtained compared to the contentional feedback control.

유연한 수평 다관절 로봇의 진동제어 (Vibration Control of Flexible SCARA Robots)

  • 임승철;용대중
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.387-392
    • /
    • 1997
  • This paper concerns a SCARA robot with the flexible forearm linked to the rigid upper arm. The equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are determined based on the inverse dynamics of the latter. In order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified to have a prescribed degree of stability. The proposed control scheme shows satisfactory performances in experiments as well as in numerical simulations.

  • PDF

유연한 수평 다관절형 로봇의 진동제어 (Vibration control of a flexible SCARA type robot)

  • 용대중;임승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.225-228
    • /
    • 1996
  • This paper concerns a SCARA type robot with the second arm flexible. Its equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are first determined based on the inverse dynamics of the latter. Next, in order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified with a prescribed degree of stability. The numerical simulations results show the satisfactory control performance.

  • PDF