• Title/Summary/Keyword: Flexible Skin

Search Result 91, Processing Time 0.028 seconds

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

Manufacture of Architectural Skin-structure with a Double Curved Surface Using Flexible Stretch Forming (가변 스트레치 성형공정을 활용한 건축외피 구조물의 비정형 곡면 제작)

  • Park, J.W.;Kim, Y.B.;Kim, J.;Kim, K.H.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.196-203
    • /
    • 2013
  • Flexible stretch forming is an appropriate process for manufacturing of components for aerospace, shipbuilding and architecture structures. Flexible stretch forming has several advantages including that it could be applied to form various shapes such as ones with double curved surfaces. In this study, a systematic numerical simulation was conducted for forming double curved surfaces using flexible stretch forming. The desired surface had a saddle type configuration. It had two radii one of 2500mm and the other of 2000mm along its length and width. In the simulation, the decrease of elastic recovery due to the stretching was confirmed. Experiments were also conducted to confirm the viability of the process. By comparing the simulation to the experiment results, the suitability of flexible stretch forming for double curved surfaces was verified. From the results, the maximum error from desired surface was confirmed at about 1.3mm at the edge of the surface. Hence, it is confirmed that flexible stretch forming has the capability and feasibility to manufacture curved surfaces for architectural skin-structures of buildings.

Usefulness Verification for Flexible Stretch Forming Process using finite Element Method (유한요소법을 이용한 가변 스트레치 성형공정의 적합성 검증)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Song, W.J.;Ku, T.W;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.241-244
    • /
    • 2009
  • This paper deals with a usefulness verification of stretch forming process using flexible die. The stretch forming method is widely used in aircraft and high-speed train industries for manufacturing of skin structure, which is made of sheet metal. A great number of solid dies are originally used and developed for specific shapes with respect to different curvature radii of the skin structures. Accordingly, flexible stretch forming process is proposed in this study. It replaces the conventional solid dies with a set of height adjustable discrete punches. A usefulness of the flexible die is verified through extensive numerical simulations of the stretch forming process for simply curved sheet plate. The elastic recovery is considered and formability evaluations are conducted through a comparison of symmetry plane configurations.

  • PDF

Microfiber-based Textile Pressure Sensor with High Sensitivity and Skin-breathability (높은 민감도 및 우수한 피부 통기성을 가진 마이크로 섬유 기반의 직물형 유연 압력 센서)

  • Kangto Han;Jang-hee Choi;Jeongwoo Lim;Hyeyoung Gong;Geun Yeol Bae
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.179-187
    • /
    • 2023
  • In this study, we developed a microfiber-based flexible pressure sensor with high sensitivity and excellent skin breathability. A nonwoven fabric composed of microfibers was prepared by electrospinning, which resulted in excellent moisture permeability of the sensor (143 g∙m-2∙h-1). In particular, high-pressure sensitivity (0.36 kPa-1) was achieved by introducing submicron structures on the microfiber surface by controlling the ambient humidity during electrospinning. The fabrication technology of the microfiber-based flexible pressure sensors reported in this study is expected to contribute to the commercialization of flexible pressure sensors applicable to long-term wearable health monitoring as well as virtual/augmented reality and electronic skin applications.

Polymer/Metal Based Flexible MEMS Biosensors for Nerve Signal Monitoring and Sensitive Skin

  • Kim, Yong-Ho;Hwang, Eun-Soo;Kim, Yong-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • This paper presents fabrication process and experimental results of two different types of flexible MEMS biosensors based on polymer/metal multilayer processing techniques. One type of a biosensor is a microelectrode array (MEA) for nerve signal monitoring through implanting the MEA into a living body, and another is a tactile sensor capable of being mounted on an arbitrary-shaped surface. The microelectrode array was fabricated and its electrical characteristics have been examined through in vivo and in vitro experiment. For sensitive skin, flexible tactile sensor array was fabricated and its sensitivity has been analyzed. Mechanical flexibility of these biosensors has been achieved by using a polymer, and it is verified by implanting a MEA to an animal and mounting the tactile sensor on an arbitrary-shaped surface.

Strain sensing skin-like film using zinc oxide nanostructures grown on PDMS and reduced graphene oxide

  • Satish, Tejus;Balakrishnan, Kaushik;Gullapalli, Hemtej;Nagarajaiah, Satish;Vajtai, Robert;Ajayan, Pulickel M.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • In this paper, we present a strain-sensitive composite skin-like film made up of piezoresistive zinc oxide (ZnO) nanorods embedded in a flexible poly(dimethylsiloxane) substrate, with added reduced graphene oxide (rGO) to facilitate connections between the nanorod clusters and increase strain sensitivity. Preparation of the composite is described in detail. Cyclic strain sensing tests are conducted. Experiments indicate that the resulting ZnO-PDMS/rGO composite film is strain-sensitive and thus capable of sensing cycling strain accurately. As such, it has the potential to be molded on to a structure (civil, mechanical, aerospace, or biological) in order to provide a strain sensing skin.

Development of Stretch Forming Apparatus using Flexible Die (가변금형을 이용한 스트레치 성형장치 개발)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • A stretch forming method has been widely used in sheet metal forming process. Especially, this process has been adopted in aircraft and high-speed train industries for skin structure forming having a variety of curvature. Until now, solid dies, which are designed with respect to the specific shapes and manufactured as a single piece, have been usually applied to stretch forming process. Therefore, a great number of solid dies has to be developed according to the shapes of the curved skin structure. Accordingly, a flexible die is proposed in this study. It replaces the conventional solid dies with a set of height adjustable punch array. A usefulness of the flexible die is verified through a formability comparison with the solid die using finite element method considering an elastic recovery and the stretch forming apparatus with the flexible die is developed.

Enhanced Transdermal Delivery of Vitamin C Derivative using lontophoretic Gel Patch with Flexible Thin Layer Battery (Flexible Thin Layer Battery가 부착된 lontophoretic Gel Patch를 이용한 Vitamin C 유도체의 경피 흡수 증진)

  • Cho, Wan-Goo;Rang, Mun-Jeong;Song, Young-Sook;Lim, Young-Ho;Park, Hyeon-Woo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.23-28
    • /
    • 2007
  • Ascorbic acid (vitamin C, AsA) has been known as a strong reducing agent and is supposed to retard the synthesis of melanin pigment. A main problem that arose in using vitamin C in cosmetic formulation was its poor stability and low skin permeability, which result in low lightening efficacy in clinical trials. In this study, iontophoretic gel patch with flexible thin layer battery was employed in order to enhance skin permeation of vitamin c derivative (ascorbyl glucoside, AsAG) and to increase its lightening efficacy. in vitro iontophoretic skin permeation and stability of AsAG, safety and clinical lightening efficacy of iontophoretic patch containing 2% AsAG solution were examined. A optimun current of ionthophoretic patch for korean women was 0.1 mA, considering the skin permeability and skin irritation of consumers. We suggest that iontophoretic gel patch could be a safe system for enhancing the skin permeation of AsAG and lightning efficacy.