• 제목/요약/키워드: Flexible Robot Manipulator

검색결과 76건 처리시간 0.023초

평행구동방식 로봇 조작기의 진동제어 (Vibration Control of a Robot Manipulator with a Parallel Drive Mechanism)

  • 최승철;하영균;박영필
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2015-2025
    • /
    • 1991
  • 본 연구에서는 무거운 부하중량(payload)을 운반하는 평행구동기구(parallel drive mechanism)를 가진 2 자유도 수직 로봇 조작기의 마지막 링크를 고속화 및 작업 영역의 확대를 위해 경량의 길이가 긴 링크로 구성하고, 동적 해석 및 제어를 위해 이 를 수직면상에서 회전하는 첨단질량을 가진 Euler-Bernoulli 외팔보로 모델링하였다. Hamilton의 원리를 적용하여 계의 지배방정식을 구하였으며 이를 조작기의 최종 자세 (configuration)에 대한 교란변수들(periturbed variables)을 도입하여 이산시간계 상 태방정식으로 표시하였다. 계의 상태방정식에 대해 디지탈 최적제어 및 최적관측기 이론을 적용하여, 유연한 조작기의 위치 및 진동제어를 병해하여 수행하는 제어기를 설계하였으며, 제어기의 효율성 및 적용성을 검토하기 위하여 수치해석 및 실험을 행 하였고 이들 결과를 비교, 검토하였다.

Three-Step Input Control Scheme for Minimization of Robot's Vibration

  • 장완식
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.54-64
    • /
    • 1997
  • This paper provides a practical control scheme called three-step input method in order to minimize both robot response time and the resulting residual vibration when the robot manipulator reaches its defined end point. This work is concerned with defining a simple practical method to utilize step inputs to achieve optimum response. The optimum response is achieved by using a self- adjusting input command function that is obtained during a real time processing . The practicality of this control scheme is demonstrated by using an analog computer to simulate a simulate a simple flexible robot and conventional servo controller. The experiments focus on point-to-point movement. Also, this method requires little computational effort through the intelligent use of conventional servo control technology and the robot's vibration characteristics.

  • PDF

소재의 정밀 Loading/unloading 기술 개발 (Study of High Precision Mechanism For Loading/Unloading of Material)

  • 최현석;탁태열;한창수;이낙규;최태훈;이혜진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.419-423
    • /
    • 2005
  • In microfactory, loading/unloading mechanism supply the row material to processing machines for manufacturing process such as pressing, cutting, plastic deformation. This mechanism for rnicrofactory is designed as modularity robot. Microfactory system have to be flexible structure for variety product item. For system flexibility, applied mechanisms are developed as moduality. Robot moduality needs the specific characteristics which are different from one of macro, typical robot system. In this paper, we discussed about the modularity robot. and proposed the loading/unloading mechanism for working in microfactory system.

  • PDF

유연한 로보트 팔의 동적 모우드 제어 (Dynamic Mode Control of Flexible Robotic Arm)

  • 박세승;박종국
    • 전자공학회논문지B
    • /
    • 제30B권9호
    • /
    • pp.36-44
    • /
    • 1993
  • In the development of a high speed and light weight manipulator, it is necessary to consider the flexibility of a robotic arm. The infinite dynamics must be analyzed to obtain the finite mode modeling to achieve the feasible controller design of the robotic arm. The modeling procedures of the flexible robot arm, and natural frequencies and mode shapes by the constrained and unconstrained mode method are illustrated. The transfer function of the robot arm with a payload is also shown. The controller is designed by the pole assignment and optimal control theory to compensate for the unmodelled dynamic effects to the low order system. Also, the pole assignment method involving the harmonic vibration mode is presented through computer simulation.

  • PDF

퍼지 제어기를 이용한 유연한 로봇팔의 선단위치 제어에 관한 연구 (A Study on Position Control of a Flexible Robot Manipulator using Fuzzy Logic Controllers)

  • 정상철;안영주;이형기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3045-3047
    • /
    • 1999
  • This paper deals with a single flexible link robot system using two fuzzy logic controllers(FLC). The one is used for controlling the rigid position of the beam while it is rotated from one position to another. The other is adopted to reduce the oscillation caused by the rigid body motion. Many simulations are carried out to investigate characteristics of the controlled system. There are good results compared with other systems using PD controller. And also the system could be exactly controlled by the proper setting conditions for FLC.

  • PDF

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

다중처리기를 갖는 고성능 범용제어기의 개발과 여유자유도 로봇 제어에의 응용 (Development of high performance universal contrller based on multiprocessor)

  • 박주이;장평훈
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.227-235
    • /
    • 1993
  • In this paper, the development of a high performance flexible controller is described. The hardware of the controller, based on VME-bus, consists of four M68020 single-board computers (32-bit) with M68881 numerical coprocessors, two M68040 single board donputers, I/O devices (such as A/D and D/A converters, paraller I/O, encoder counters), and bus-to-bus adaptor. This software, written in C and based on X-window environment with Unix operating system, includes : text editor, compiler, downloader, and plotter running in a host computer for developing control program ; device drivers, scheduler, and mathemetical routines for the real time control purpose ; message passing, file server, source level debugger virtural terminal, etc. The hardware and software are structured so that the controller might have both flexibility and extensibility. In papallel to the controller, a three degrees of freedom kinematically redundant robot has been developed at the same time. The development of the same time. The development of the robot was undertaken in order to provide, on the one hand, a computationally intensive plant to which to apply the controller, and on the other hand a research tool in the field of kinematically redundant manipulator, which is, as such, an important area. By using the controller, dynamic control of the redundant manipulator was successfully experimented, showing the effectiveness and flexibility of the controller.

  • PDF

유연 링크 로봇의 특이섭동모델 최적제어 (Optimal control of a flexible robot arm using singular perturbation model)

  • 한기봉;이시복
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.62-68
    • /
    • 1996
  • Linear controllers, such as LQG/LTR controller, have been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the linearized model upon which the controller is designed. In this study, singular perturbation model is tested in designing a LQG/LTR controller for a flexible link manipulator. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance of the proposed controller reaches reasonably to the one based on the full model.

  • PDF

착유컵 자동 착탈을 위한 매니퓰레이터 개발 (A Robotic Milking Manipulator for Teat-cup Attachment Modules)

  • 이대원;김웅;김현태;김동우;최동윤;한정대;권두중;이승기
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.163-168
    • /
    • 2001
  • A manipulator for test-cup attachment modules, which was a part of a robot milking system, was developed to reduce cost and labor for cow milking processing. A Cartesian coordinate manipulator was designed for the milking process, because it was quite flexible and can be constructed more economically than any other configuration. The manipulator was made use of DC motors, screws for power transmission, a RS422 interface system for the transmission of coordinate values and a one-chip microprocessor, 89C52. Performance tests of the manipulator were conducted to measure experimentally the precision of all axes. Some of the results are as follows. 1. The Cartesian coordinate manipulator was designed and built. Dimension of the three perpendicular axes (X, Y, and Z) and one arm’s axis(W) to pick up and transfer the modules were 700㎜$\times$450㎜$\times$550㎜$\times$650㎜. The arm’s axis moved the teat-cup attachment module, which attached four teat-cup to four teats, detached four teat-cup from four teats, was designed and manufactured by using CAD, CAM and CNC. 3. After 10 replications of exercising the manipulator, mean precision values(positioning error) of X, Y, Z axes wee 0.48㎜, 0.20㎜, 0.19㎜, respectively. Therefore, we conclude the axes to have a precision better than 0.5㎜, had no problem to operate correctly the milking manipulator.

  • PDF

POSITION CONTROL OF A FLEXIBLE ROBOT ARM UNDER IMPULSIVE LOADING THE TIP

  • Chonan, Seiji;Yuki, Yasuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.896-901
    • /
    • 1990
  • A simulation analysis is presented for the position control of a single-link flexible manipulator whose end-effector is subjected to an impulsive force. Arm is rotated by a d.c. servomotor at the shoulder so that the end point stays precisely at its initial position even if the end effector is thumped with the impulsive loading. A gap sensor is used to measure the tip displacement. The control torque based on the PD control law is applied to the motor through the driver circuit. The control strategy is tested by means of computer simulation for the one-link flexible-arm prototype in the authers' laboratory at Tohoku Univ.

  • PDF