• Title/Summary/Keyword: Flexible Robot Arm

Search Result 71, Processing Time 0.028 seconds

Deterministic Nonlinear Control of Two-Link Flexible Arm (2관절 유연한 로봇 팔에 대한 비선형 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.236-242
    • /
    • 2009
  • When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}$-2C is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed. Lyapunov stability theory is applied to achieve a stable deterministic nonlinear controller for the regulation of joint angle.

  • PDF

Inverse Dynamics for the Tip Position Control of the Transiational Motion Flexible Arm (병진 운동 탄성암의 선단 위치제어를 위한 역동역학)

  • 방두열;이성철;장남정이;저강광
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.155-159
    • /
    • 1991
  • This paper is a study on the Inverse dynamics of a one-1ink flexible robot arm which is control led by the transiational base motion. The system is composed of the flexible arm, the mobil stage, a DC servomotor, and a computer. The arm base is shifted so that the tip follows a desired path function. The tip Rotten is measured by the laser displacement sensor. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method to the resulted equations. Tip responses obtained both theoretically and experimentally are in good agreement with the desired trajectory, which shows that the scheme of inverse dynamics is effective for the open-loop endpoint positioning of the flexible am driven by the translation stage.

  • PDF

Robust Controller Design for Flexible Robot Arm Manipulator (유연한 로봇팔의 선단 위치 제어를 위한 강인한 제어기의 설계)

  • 신봉철;이형기;최연욱;안영주
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.76-82
    • /
    • 2002
  • The objective of this paper is to design a robust controller for a flexible robot arm manipulator using LMI(Linear Matrix Inequality) theory, and confirm its effectiveness through experimentation. We first describe a modeling Process of the flexible arm in order to get a mathematical model, and then discuss how to approximately obtain the uncertainty of the model for robust control. As to the control system design, we adopt the LMI-based H$_{\infty}$ synthesis algorithm which has the merits of eliminating the regularity restrictions attached to the Riccati-based methods. As a result of this, we can cope with the parameter variation (that is, modeling uncertainty) due to the tip-load variation. Finally we confirm the effectiveness of the controller through experiment and simulation.

  • PDF

Adaptive control of flexible joint robot manipulators (유연성 관절 로봇 매니퓰레이터 적응 제어)

  • 신진호;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.260-265
    • /
    • 1992
  • This paper presents an adaptive control scheme for flexible joint robot manipulators. This control scheme is based on the Lyapunov direct method with the arm energy-based Lyapunov function. The proposed adaptive control scheme uses only the position and velocity feedback of link and motor shaft. The adaptive control system of flexible joint robots is asymptotically stable regardless of the joint flexibility value. Therefore, the assumption of weak joint ealsticity is not needed. Also, joint flexibility value is unknown. Simulation results are presented to show the feasibility of the proposed adaptive control scheme.

  • PDF

A Study on Design of Flexible Gripper for Handling Working of the Forging Process in Heat Resisting Environment (내열환경 단조공정에서 핸들링작업을 위한 유연 아암 그리퍼 설계에 관한 연구)

  • Yang, Jun-Seok;Koo, Young-Mok;Jo, Sang-Young;Won, Jong-Bum;Won, Jong-Dae;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.216-223
    • /
    • 2015
  • Recently Manipulation capability is important for a robot. Interaction between a robot hand and objects can be properly controlled only is suitable sensors are available. Recently the tendency is to create robot hands more compact and high integrated sensors system, in order to increase the grasping capability and in order to reduce cabling through the finger, the palm and the arm. As a matter of fact, miniaturization and cabling harness represents a significant limitation to the design of small sized embedded sensor. Ongoing work is focusing on a flexible manipulation system, which consists of a dual flexible multi-fingered hand-arm system, and a dual active vision system.

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network (다층 신경회로망을 이용한 유연성 로보트팔의 위치제어)

  • 김병섭;심귀보;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF

Design of Robot Arm Controller based on Motion Capture (동작 모방형 로봇팔의 제어기 설계)

  • Ha, Chang-Wan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.535-536
    • /
    • 2011
  • 본 논문에서는 컨트롤러를 부착한 사람의 팔 움직임을 따라 하는 Robot Arm에 대해 기술한다. 구부러짐에 따라 저항값이 다르게 나오는 flexible sensor를 관절마다 부착하여 사람의 팔의 움직임에 따라 만들어진 Data를 Analog Digital Converting과 Digital Filtering을 거쳐 데이터를 안정화 있게 로봇팔로 전송 하도록 설계하였다.

  • PDF

Design of the Controller with Sliding Mode for Robot Arm (슬라이딩모드를 갖는 로봇 팔의 제어기 설계)

  • 서원창;임규만;정영창
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.703-706
    • /
    • 1999
  • In this paper, robust vibration control of a one-link flexible robot arm based on variable structure system is discussed. We derive dynamic equations of it using a Lagragian assumed modes method based on Bernoulli-Euler beam theory. The optimal sliding surface is designed and the problem of chattering is also solved by the adoptation of a continuous control law within a small neighborhood of the switching hyperplane.

  • PDF

POSITION CONTROL OF A FLEXIBLE ROBOT ARM UNDER IMPULSIVE LOADING THE TIP

  • Chonan, Seiji;Yuki, Yasuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.896-901
    • /
    • 1990
  • A simulation analysis is presented for the position control of a single-link flexible manipulator whose end-effector is subjected to an impulsive force. Arm is rotated by a d.c. servomotor at the shoulder so that the end point stays precisely at its initial position even if the end effector is thumped with the impulsive loading. A gap sensor is used to measure the tip displacement. The control torque based on the PD control law is applied to the motor through the driver circuit. The control strategy is tested by means of computer simulation for the one-link flexible-arm prototype in the authers' laboratory at Tohoku Univ.

  • PDF