• Title/Summary/Keyword: Flexible Multibody System Dynamics

Search Result 41, Processing Time 0.026 seconds

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

Flexible Multibody Dynamic Analysis Using Multirate Integration Method (멀티레이트 수치적분법을 이용한 유연다물체 동역학해석)

  • Kim, Seong-Su;Kim, Bong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2804-2811
    • /
    • 2000
  • A Nordsick form opf the multirate integration scheme has been proposed for flexible multibody dynamic systems. It is assumed that vibrational modal coordinates in the equations of motion are treated as fast variables, whereas the relative joint coordinates are treated as slow variables. In the multirate integration, the fast variables are integrated with small step-size, and the slow variables are integrated with larger step-size. The proposed multirate integration method is based on the Adams-Bashforth-Moulton predictor-corrector method and implemented in the Nordsieck vector form. The Nordsieck form of multrate integration method provides effective step-size control and at the same time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret system of the military tank have been carried out to show the effectiveness and efficiency of the proposed method.

Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo (중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.

Analysis of joint reaction forces of flexible multibody system with closed loops (폐쇄연쇄계를 갖는 탄성 다물체계의 효율적인 조인트반력 해석)

  • Choi, Yong-Cheol;Kim, Gwang-Seok;Kim, Oe-Jo;Yoo, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.704-713
    • /
    • 1998
  • The analysis of dynamic forces is essential to the design of systems, stress analysis, or life prediction of part of machine. Calculation of dynamic forces has very close relations with multibody dynamics algorithm. In this paper, an algorithm which calculates joint reaction force/moment of flexible multibody dynamic systems is proposed by using inverse dynamic algorithm and velocity transformation technique.

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

Dynamics Analysis for Flexible Systems using Finite Elements and Algebraic Quaternions (4원법과 유한요소를 이용한 유연체 동역학의 해석기법)

  • Lee, Dong-Hyun;Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2005
  • This paper deals with formulations of the energy equilibrium equation by an introduction of the algebraic description, quarternion, which meets conservations of system energy for the equation of motion. Then the equation is discretized to analyze the dynamits analysis of flexible multibody systems in such a way that the work done by the constrained force completely is eliminated. Meanwhile, Rodrigues parameters we used to express the finite rotation lot the proposed method. This method lot the initial essential step to a guarantee of developments of the 3D dynamical problem provides unconditionally stable conditions for the nonlinear problems through the numerical examples.

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics (탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Ku, Namkug;Jo, A-Ra;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

Evaluation of Structural Safety of Electro-Mechanical Linear Actuator and Load Simulator with Plate Spring

  • Kim, Dong-Hyeop;Kim, Young-Cheol;Kim, Sang-Woo;Lee, Jong Whan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2020
  • This study investigated the structural behaviors and safety of an electro-mechanical linear actuator and a load simulator with a plate spring. The material and dimensions of the plate spring were determined by theoretically calculating the stress and torsional angle for the rating load of the actuator. Thereafter, a flexible multibody dynamics (FMBD) analysis was conducted on the linear actuator and load simulator to confirm the performance of the load simulator and acquire the reaction forces acting on the actuator and simulator. The structural safety of the linear actuator and load simulator was evaluated via finite element analysis using the aforementioned reaction forces. Consequently, the proposed linear actuator and load simulator were determined to be structurally safe; however, the safety factors for the actuation rod and the housing on the actuator were excessively high. Therefore, the weight and cost must be reduced to improve their design parameters in the future.

Coupling Model of the Maglev Vehicle/Guideway (자기부상열차/가이드웨이 연성 모델링 연구)

  • Han, Hyung-Suk;Sung, Ho-Kyung;Kim, Young-Joong;Kim, Byung-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.243-250
    • /
    • 2007
  • In general the Maglev vehicle is run over the elevated track called guideway. Since the guideway is elevated, the flexibility of the guideway has an effect on the dynamic responses of a vehicle such as its stability and ride quality. To improve the running performance of the Maglev vehicle and design a cost effective guideway using the dynamic analysis, the dynamic analysis of the system requires the coupling model of the Maglev vehicle and guideway. A coupling model based on multibody dynamics is proposed and programmed. With the program, the UTM01, a low speed Maglev vehicle, is analyzed and discussed.

Dynamic Interaction Analysis of Maglev and 3 Span Continuous Guideway Based on 3 D Multibody Dynamic Simulation (3차원 다물체동역학 시뮬레이션 기반 자기부상열차와 3경간 연속교 동적상호작용 해석)

  • Han, Jong-Boo;Kim, Ki-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.409-416
    • /
    • 2016
  • This study aims to investigate dynamic interaction characteristics between Maglev train and 3 span continuous guideway. The integrated model including a 3D full vehicle model based on multibody dynamics, flexible guideway by a modal superposition method, and levitation electromagnets with the feedback controller is proposed. The proposed model was applied to the Incheon Airport Maglev Railway to analyze the dynamic response of the vehicle and guideway from the numerical simulation. Using field test data of air gap and guideway deflections, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. From the results, it is confirmed that Maglev railway system are designed and constructed safely according to the design criteria.