• Title/Summary/Keyword: Flexible Joint Robot Control

Search Result 65, Processing Time 0.021 seconds

A stochastic model based tracking control scheme for flexible robot manipulators

  • Lee, Kumjung;Nam, kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.152-155
    • /
    • 1994
  • The presence of joint elasticity or the arm flexibility causes low damped oscillatory position error along a desired trajectory. We utilize a stochastic model for describing the fast dynamics and the approximation error. A second order shaping filter is synthesized such that its spectrum matches that of the fast dynamics. Augmenting the state vector of slow part with that of shaping filter, we obtain a nonlinear dynamics to which a Gaussian white noise is injected. This modeling approach leads us to the design of an extended Kalman filter(KEF) and a linear quadratic Gaussian(LQG) control scheme. We present the simulation results of this control method. The simulation results show us that our Kalman filtering approach is one of prospective methods in controlling the flexible arms.

  • PDF

Design and Control of a Biomimetic Fish Robot (생체 모방 로봇 물고기의 설계와 제어에 관한 연구)

  • Kim, Young-Jin;Kim, Seung-Jae;Yang, Kyung-Sun;Lee, Jeong-Min;Yim, Chung-Hyuk;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper introduces the mechanical design, fabrication, and control of a biomimetic fish robot whose driving motions resemble a real fish's flexibility and movement. This robot uses two motors create flexible movement like that of a fish. Several schemes, such as neutral buoyancy, fast underwater swimming, and direction changes, are introduced. The tail of the fish robot is made of a polymer material for flexible movement. The interior of the tail contains a joint and a wire. A sine wave command was applied to the tail to produce motion resembling a real fish swimming, and a buoy control device was installed. The up and down motion of the robot fish was controlled using this device.

Network Realization for a Distributed Control of a Humanoid Robot (휴머노이드 로봇의 분산 제어를 위한 네트윅 구현)

  • Lee Bo-Hee;Kong Jung-Shik;Kim Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.485-492
    • /
    • 2006
  • This paper deals with implementation of network for distributed control system of a humanoid robot ISHURO(Inha Semyung Humanoid Robot). A humanoid robot needs much degree of freedom structurally and much data for having flexible movement. To realize such a humanoid robot, distributed control method is preferred to the centralized one since it gives a compactness, modularity and flexibility for the controllers. For organizing distributed control system of a humanoid robot, a control processor on a board is needed to individually control the joint motor and communication technology between the processors is required to transmit its information within control time. The processor is DSP-based processor and includes CAN network on a chip. It shares the computational load such as monitoring the sensor information and controlling the actuator between each of modules. In this paper, the communication architecture is suggested and its message protocol are discussed including message structure, time consumption for transmission, and controller structure at the view of distributed control for a humanoid robot. All of the sequence are simulated with Matlab and then verified with real walking experiment by ISHURO.

Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors (디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계)

  • 김용태;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Optimized Motion Planning Considering the Lifetime for Bimanual Robotic Assembly (양팔 로봇을 이용한 조립 작업에서 수명을 고려한 최적 운동 계획법)

  • Hwang, Myun Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.972-976
    • /
    • 2015
  • The objective of this research is to verify the quantitative efficiency of a bimanual robotic task. Bimanual robots can realize dexterous and complicated motions using two cooperating arms. However, its motion planning and control method are not simple for implementing flexible tasks such as assembly. In this paper, the proposed motion planning method is used to find an optimal solution satisfying a designed cost function and constraints with regard to the kinematics and redundancy of the bimanual robot. The simulation results show that the lifetime of the manipulator can be changed by the proposed cost function consisting of angular velocity and angular acceleration of each joint in the same assembly task.

Development of Inpipe Inspection Robot System (배관 검사 로봇 시스템 개발)

  • Baek, Sang-Hun;Ryu, Seong-Mu;No, Se-Gon;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2030-2039
    • /
    • 2001
  • Recently, various inpipe inspection robots are developed and its effective values are increased in industrial use. However, it is so difficult to make a inpipe inspection robot system which has flexible mobility and accuracy of inspection in pipelines. Especially, it is very important to know the exact crack position. In this paper, we are to present a lately developed inpipe inspection robot system which can resolve the above Problems. The robot is configured as an articulated structure like a snake. Two active driving vehicles are located in front and rear of the inspection robot respectively and passive modules such as a nondestructive testing module and a control module are chained between the active vehicles. Special feature of the robot system is a ground interface, which is able to show informations of robot and pipelines. By using this, so called virtual map in this paper, user is able to know the pipelines'feature and crack position.

Tracking Control of RLFJ Robot Manipulator Using Only Position Measurements by Backstepping Method

  • Ji H. Uh;Jongn H. Oh;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.8-13
    • /
    • 1998
  • A tracking controller is presented for RLFJ(rigid link flexible joint) robot manipulators with only position measurements. The controller is developed based on the integrator backstepping design method and on the two observers: the first is simple linear form observer for the filtered link velocity errors and the other for the actuator velocities. The proposed controller achieves exponential tracking of link positions and velocities while keeping all internal signals bounded. It also guarantees exponential convergence of the estimated signals to their actual ones. Finally, simulation results are included to demonstrate the tracking performance.

  • PDF

Intelligent Digital Control of a Single Link Flexible-Joint Robot with Uncertainties (불확실성을 갖는 단일 링크 유연로봇의 지능형 디지털 제어)

  • Jang Kwon Kyu;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.318-323
    • /
    • 2005
  • In this paper, we propose a systematic method of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear system. A parallel distributed compensation (PDC) technique is then used to design a fuzzy model based controller for both stabilization and tracking. Finally, the designed continuous-time controller is converted to an equivalent discrete-time controller by using an intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy model based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, the single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

Robust Switching-Type Fuzzy-Model-Based Output Tracker

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.411-418
    • /
    • 2005
  • This paper discusses an output-tracking control design method for Takagi-Sugeno fuzzy systems with parametric uncertainties. We first represent the concerned system as a set of uncertain linear systems. The tracking problem is then converted into a stabilization problem thereby leading to a more feasible control design procedure. A sufficient condition for robust practical output tracking is derived in terms of a set of linear matrix inequalities. A numerical example for a flexible-joint robot-arm model has been demonstrated, to convincingly show effectiveness of the proposed system modeling and control design.

Robust Output-Tracking Control of Uncertain Takagi-Sugeno Fuzzy Systems

  • 이호재;박진배;정근호;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • A systematic output-tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm-bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities (LMIs). A stability condition on the traversing time-instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design method.

  • PDF