• Title/Summary/Keyword: Flexible Electronic Device

Search Result 168, Processing Time 0.035 seconds

Dependence of contrast ratio on rib structure in flexible toner type EPD

  • Ryu, Gi-Seong;Lee, Chang-Bin;Han, Sang-Kwuon;Chun, Seung-Hee;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.886-888
    • /
    • 2009
  • We fabricated flexible electronic paper display(EPD) by using toner particles on plastic (PC) substrate. We observed the relationship between contrast ratio and changes of rib structures. One is a fabrication of ribs on bottom substrate. The display with ribs on bottom substrate had higher contrast ratio about 46% than display with ribs on top substrate. The other is a change of density of rib. The less density of ribs fabricated, the higher the contrast ratio become.

  • PDF

Mechanically Flexible PZT thin films on Plastic Substrates (플라스틱 기판위의 기계적으로 유연성을 가진 PZT 박막)

  • Rho, Jong-Hyun;Ahn, Jong-Hyun;Lee, Nae-Eung;Ahn, Joung-Ho;Kim, Sang-Jin;Lee, Hwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.13-13
    • /
    • 2009
  • We have investigated the fabrication and properties of bendable PZT film formed on plastic substrates for the application in flexible memory. These devices used the PZT active layer formed on $SiO_2/Si$ wafer by sol-gel method with optimized device layouts and Pt electrodes. After etching Pt/PZT/Pt layers, patterned by photolithography process. these layers were transferred on PET plastic substrate using elastomeric stamp. The level of performance that can be achieved approaches that of traditional PZT. devices on rigid bulk wafers.

  • PDF

Structural Stability for Pt Line and Cross-Bar Sub-Micron Patterns (고정렬 Pt 라인 및 크로스-바 미세패턴의 구조적 안정성 연구)

  • Park, Tae Wan;Park, Woon Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.510-514
    • /
    • 2018
  • This study discusses and demonstrates the structural stability of highly ordered Pt patterns formed on a transparent and flexible substrate through the process of nanotransfer printing (nTP). Bending tests comprising approximately 1,000 cycles were conducted for observing Pt line patterns with a width of $1{\mu}m$ formed along the direction of the horizontal (x-axis) and vertical (y-axis) axes ($15mm{\times}15mm$); and adhesion tests were performed with an ultrasonicator for a period greater than ten minutes, to analyze the Pt crossbar patterns. The durability of both types of patterns was systematically analyzed by employing various microscopes. The results show that the Pt line and Pt crossbar patterns obtained through nTP are structurally stable and do not exhibit any cracks, breaks, or damages. These results corroborate that nTP is a promising nanotechnology that can be applied to flexible electronic devices. Furthermore, the multiple patterns obtained through nTP can improve the working performance of flexible devices by providing excellent structural stability.

Recent Progress in Flexible/Wearable Electronics (플렉시블/웨어러블 일렉트로닉스 최신 연구동향)

  • Kang, Seok Hee;Hong, Suck Won
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.34-42
    • /
    • 2014
  • Flexible devices have been developed from their rigid, heavy origins to become bendable, stretchable and portable. Such a paper displays, e-skin, textile electronics are emerging research areas and became a mainstream of overall industry. Thin film transistors, diodes and sensors built on plastic sheets, textile and other unconventional substrates have a potential applications in wearable displays, biomedical devices and electronic system. In this review, we describe current trends in technologies for flexible/wearable electronics.

Planar Type Flexible Piezoelectric Thin Film Energy Harvester Using Laser Lift-off

  • Noh, Myoung-Sub;Kang, Min-Gyu;Yoon, Seok Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.489.2-489.2
    • /
    • 2014
  • The planar type flexible piezoelectric energy harvesters (PEH) based on PbZr0.52Ti0.48O3 (PZT) thin films on the flexible substrates are demonstrated to convert mechanical energy to electrical energy. The planar type energy harvesters have been realized, which have an electrode pair on the PZT thin films. The PZT thin films were deposited on double side polished sapphire substrates using conventional RF-magnetron sputtering. The PZT thin films on the sapphire substrates were transferred by PDMS stamp with laser lift-off (LLO) process. KrF excimer laser (wavelength: 248nm) were used for the LLO process. The PDMS stamp was attached to the top of the PZT thin films and the excimer laser induced onto back side of the sapphire substrate to detach the thin films. The detached thin films on the PDMS stamp transferred to adhesive layer coated on the flexible polyimide substrate. Structural properties of the PZT thin films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). To measure piezoelectric power generation characteristics, Au/Cr inter digital electrode (IDE) was formed on the PZT thin films using the e-beam evaporation. The ferroelectric and piezoelectric properties were measured by a ferroelectric test system (Precision Premier-II) and piezoelectric force microscopy (PFM), respectively. The output signals of the flexible PEHs were evaluated by electrometer (6517A, Keithley). In the result, the transferred PZT thin films showed the ferroelectric and piezoelectric characteristics without electrical degradation and the fabricated flexible PEHs generated an AC-type output power electrical energy during periodically bending and releasing motion. We expect that the flexible PEHs based on laser transferred PZT thin film is able to be applied on self-powered electronic devices in wireless sensor networks technologies. Also, it has a lot of potential for high performance flexible piezoelectric energy harvester.

  • PDF

Research Trends in Thermal Interface Materials for Flexible and Stretchable Electronic Device (유연신축성 전자 디바이스를 위한 열계면 소재 연구동향)

  • Young-Joo Park;Geon-Joo Jeong;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • In the trend of the multi-functionalization, miniaturization, and increased power output trends of flexible and stretchable electronic devices, the development of materials or structures with superior heat transfer characteristics has become a pressing issue. Traditional thermal interface materials (TIM) fail to meet the heat dissipation requirements of flexible and stretchable electronic devices, which must endure rapid bending, twisting, and stretching. To address this challenge, there is a demand for the development of TIM that simultaneously possesses high thermal conductivity and stretchability. This paper examines the research trends of liquid metal, carbon, and ceramic-based stretchable thermal interface materials and explores effective strategies for enhancing their thermal and mechanical properties.

Implementation of a Flexible Intelligent Electronic Device(IED) platform based on The Network processor (Network processor 기반 유연 Intelligent Electronic Device(IED) 플랫폼 구현)

  • Jeon, Hyeon-Jin;Lee, Wan-Gyu;Chang, Tae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.255-257
    • /
    • 2006
  • This paper proposed a platform which includes both Network processor and DSP for flexible IED. The Network processor is one of the Intel's IXP4XX Product Line family and the DSP is one of the TI's C6000 family. An embedded Linux is ported in Network processor so that a DSP program can be downloaded to Network processor through ethernet and then downloaded to DSP. Using this method, various algorithms according to IED can be applied to the Network processor board. Maximum ten ADCs can be connected because there is a CPLD between DSP and ADC. That is, the network processor board which can measure maximum 40 channels is implemented. In DSP program, thread and double buffering methods are used not to miss voltage samples. The Network processor board is verified using a method that eight channel voltage signals converted to digital are transmitted to server through both DSP and IXP425.

  • PDF

PDMS-based pixel-wall bonding technique for a flexible liquid crystal display (플렉서블 액정 디스플레이를 위한 PDMS 기반 pixel-wall bonding 기술)

  • Kim, Young-Hwan;Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Paek, Kyeong-Kap;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.42-42
    • /
    • 2008
  • Considerable attention has been focused on the applications of flexible liquid crystal (LC)-based displays because of their many potential advantages, such as portability, durability, light weight, thin packaging, flexibility, and low power consumption. To develop flexible LCDs that are capable of delivering high-quality moving images, like conventional glass-substrate LCDs, the LC device structure must have a stable alignment layer of LC molecules, concurrently support uniform cell gaps, and tightly bind two flexible substrates under external tension. However, stable LC molecular alignment has not been achieved because of the layerless LC alignment, and consequently high-quality images cannot be guaranteed. To solve these critical problems, we have proposed a PDMS pixel-wall based bonding method via the IB irradiation was developed for fasten the two substrates together strongly and maintain uniform cell gaps. The effect of the IB irradiation on PDMS with PI surface was also evaluated by side structure configuration and a result of x-ray photoelectron spectroscopic analysis of PDMS interlayer as a function of binder with substrates. large number of PDMS pixel-walls are tightly fastened to the surface of each flexible substrate and could maintain a constant cell gap between the LC molecules without using any other epoxy or polymer. To enhance the electro-optical performance of the LC device, we applied an alignment method that creates pretilt angle on the PI surface via ion beam irradiation. Using this approach, our flexible LCDs have a contrast ratio of 132:1 and a response time of about 15 ms, resulting in highly reliable electro-optical performance in the bent state, comparable to that of glass-substrate LCDs.

  • PDF

Driving Circuit Design and Manufacture of Powder Electroluminescent Device for Information Display (문자구동형 후막 전계발광소자 제작 및 구동회로 설계)

  • Lee, Jong-Chan;Cho, Whang-Sin;Sung, Hyun-Ho;Park, Yong-kyu;Park, Dae-Boe
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1730-1732
    • /
    • 2000
  • Powder Electroluminescent Device is the solid state device which has a low power consumption, large area emission with uniformity, easy manufacturing, simple structure, and flexible mechanically. In this paper, we made the information display with the powder electroluminescent device using back-light and designed the driving circuit.

  • PDF

A Review: Comparison of Fabrication and Characteristics of Flexible ReRAM and Multi-Insulating Graphene Oxide Layer ReRAM (산화 그래핀을 절연층으로 사용한 유연한 ReRAM과 다층 절연층 ReRAM의 제작 방법 및 결과 비교)

  • Kim, Dong-Kyun;Kim, Taeheon;Yoon, Taehwan;Pak, James Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1369-1375
    • /
    • 2016
  • A rapid progress of the next-generation non-volatile memory device has been made in recent years. Metal/insulator/Metal multi-layer structure resistive RAM(ReRAM) has attracted a great deal of attention because it has advantages of simple fabrication, low cost, low power consumption, and low operating voltage. This paper describes the working principle of the ReRAM device, a review of fabrication techniques, and characteristics of flexible ReRAM devices using graphene oxide as an insulating layer and ReRAM devices using multi-layered insulator. The switching characteristics of the above ReRAM devices have been compared. The oxidized graphene could be employed as an insulator of next generation ReRAM devices.