• Title/Summary/Keyword: Flavonoid-rich Plant

Search Result 16, Processing Time 0.028 seconds

Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics

  • Kim, Eun T.;Guan, Le Luo;Lee, Shin J.;Lee, Sang M.;Lee, Sang S.;Lee, Il D.;Lee, Su K.;Lee, Sung S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.530-537
    • /
    • 2015
  • The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.

Quantitative Analysis of Fustin and Sulfuretin in the Inner and Outer Heartwoods and Stem Bark of Rhus verniciflua

  • Kim, Min-Young;Chung, Ill-Min;Choi, Deog-Cheon;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.208-212
    • /
    • 2009
  • The heartwood of Rhus verniciflua Stokes (Anacardiaceae) is widely used for a medicinal plant to treat diabetes mellitus and lingering intoxication in the folkloric society of Korea, while the stem bark has been traditionally used to treat menstrual disorder and helminthiasis. We previously reported that a flavonoid, fustin, isolated from the heartwood of R. verniciflua is effective in Alzheimer‘s disease and rheumatoid arthritis. To explore the possibility to produce more flavonoid-rich fraction from this plant, the MeOH extracts from the plant parts of stem bark, outer heartwood, and inner heartwood were quantitatively analyzed by HPLC. Phenolic or flavonoid compounds (chlorogenic acid, caffeic acid, p-coumaric acid, sulfuretin, fustin, fisetin, luteolin and astragalin) were detectable in the HPLC chromatogram. The orange-colored inner heartwood was found to contain the highest levels of fustin (16.96 mg/g) and sulfuretin (2.22 mg/g). Moreover, the inner heartwood accumulated fustin and sulfuretin at least 4-fold higher level as compared to the stem bark and outer heartwood. The levels of total phenolic compounds positively correlated with the extents of antioxidant properties. Therefore, the inner heartwood of R. verniciflua could be used to increase fustin concentration of the extract which is capable of treating Alzheimer‘s disease and rheumatoid arthritis.

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF

Inhibititory Activity of Flavonoid Acetates on the Histamine Release from IgE-Sensitized Mast Cells

  • Shin, Wha-Woo;Kim, Chun-Re;Choi, Se-Woong;Kim, Sung-Jin;Cho, Seung-Kil;Kim, Chang-Jong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.255-255
    • /
    • 1996
  • Flavonoids are the large class of plant-derived polyphenolic compounds with a broad spectrum of biological actions including anti-inflammatory, anti-allergic and anti-asthmatic activities. It has been reported that quercetin and some other flavonoids inhibit the histamine release from mast cells. Disodium cromoglycate, a kind of biflavonoid, have been used as a anti-asthmatic agent. Therefore, the following study was undertaken to characterize tile structure-activity relationships of flavonoids in the inhibition of histamine release, from IgE-sensitized mast cells. Flavonoid acetate were synthesized by addition of acetic anhydride to the flavonoids dissolved in pyridine. According In the Mota method, IgE-rich serum was made in rats sensitized with Pertussis vaccine and ovalbumin. Rat abdominal mast cells were harvested and purified over tile discontineous Percoll gradients, Mast cells were preincubated in RPMI with IgE-rich serum and further incubated with flavonoids. Histamine contents released from mast cells were determined fluorospectrophotometrically after stimulation with ovalbumin. (omitted)

  • PDF

Identification and Quantification of Flavonoids in Korean Wild Grape (Meoru grape, Vitis coignetiae) and Its Pomace

  • Shim, Kwan-Seob;Kang, Da-Rae;Park, Seong-Bok;Park, Jong Hyuk;Chung, Yi Hyung;Kang, Young-Hee;Shin, Daekeun
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.650-659
    • /
    • 2014
  • Large quantities of Korean wild grape (Vitis coignetiae, KWG) pomace, a by-product of grape juice and wine manufacture, are generated annually, and disposal cost of KWG pomace is now increasing. Therefore, this study was conducted to determine total polyphenol, flavonoid, and anthocyanin content in whole KWG, KWG skin and KWG pomace and to identify and quantify flavonoids found in whole KWG and KWG pomace using LC/MS/MS. Spectral analysis showed high total polyphenol and flavonoid in KWG skin extracted with 75% ethanol (p < 0.05). KWG pomace had higher amount of total polyphenol, flavonoid and anthocyanin than whole grape (p < 0.05). Sixteen flavonoids were identified, but only 10 flavonoids were quantifiable from whole KWG and KWG pomace. Both epicatechin and rutin were the major flavonoids, and 521 or 147 ng/g of epicatechin (p < 0.05) and 305 or 110 ng/g of rutin (p > 0.05) were found in whole KWG and KWG pomace, respectively. The results show that KWG pomace is a very rich source of flavonoids, thus KWG pomace can be used as a functional food additive. Plans to include KWG pomace in food production are necessary.

Comparative proteomic analysis of Celastrus hindsii Benth. phenotypes reveals an intraspecific variation

  • Nguyen, Van Huy;Pham, Thanh Loan;Ha, Thi Tam Tien;Hoang, Thi Le Thu
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.273-282
    • /
    • 2020
  • In Vietnam, Celastrus hindsii Benth, a medicinal plant rich in secondary metabolites, has been used to alleviate distress caused by ulcers, tumors, and inflammation for generations. The occurrence of two phenotypes, Broad Leaf (BL) and Narrow Leaf (NL), has raised questions about the selection of appropriate varieties for conservation and crop improvement to enhance medicinal properties. This study examined molecular differences in C. hindsii by comparing protein profiles between the NL and BL types using 2D-PAGE and MS. Peptide sequences and proteins were identified by matching MS data against the MSPnr100 databases and verified using the MultiIdent tool on ExPASy and the Blast2GO software. Our results revealed notable variations in protein abundance between the NL and BL proteomes. Selected proteins were confidently identified from 12 protein spots, thereby highlighting the molecular variation between NL and BL proteomes. Upregulated proteins in BL were found to be associated with flavonoid and amino acid biosynthesis as well as nuclease metabolism, which probably attributed to the intraspecific variations. Several bioactive proteins identified in this study can have applications in cancer therapeutics. Therefore, the BL phenotype characterized by healthier external morphological features has higher levels of bioactive compounds and could be better suited for medicinal use.

Anti-oxidative and Anti-inflammatory Constituents from the Extracts of Brassica napus L. Whole Plant (유채 전초 추출물 유래 항산화 및 항염 활성 성분)

  • Jo, Yeon Jeong;Hyun, Ju Mi;Kang, Ji Mi;Kim, Chang Yun;Lee, Nam Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • In this study, we investigated anti-oxidative and anti-inflammatory efficacy, and identified their constituents from Brassica napus L. (Korean name: Yuchae) whole plant. Upon the anti-oxidative activities screening, the ethanol extract exhibited potent DPPH and ABTS+ radical scavenging activities. On the anti-inflammation studies using LPS-induced RAW264.7 cells, the extract inhibited the production of NO and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) effectively. To identify major constituents of B. napus extract, further purification was performed and led to isolation of two compounds; isorhamnetin 3,7-O-diglucoside(1) and isorhamnetin 3-O-glucoside(2). Quantitative analysis by high pressure liquid chromatography (HPLC) determined the flavonoid 1 as the major constituent. Isolated compounds showed DPPH radical scavenging effects and decreased NO levels without causing cell toxicities. These results indicate that the extract of Yuchae, a rich plant resource in Jeju Island, could be potentially applicable as an anti-oxidative and/or anti-inflammatory ingredients.

Construction of Data System on Seed Morphological Traits and Functional Component in Tartary Buckwheat Germplasms (쓴메밀 유전자원의 종자특성과 유용성분 변이에 관한 자원 정보 구축)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Lee, Jong Nam;Kim, Ki Deog;Suh, Jong Taek;Nam, Jeong Hwan;Chang, Dong Chil;Park, Min Woo;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.446-459
    • /
    • 2020
  • This study analyzed the phenotypes and chemotypes of 74 tartary buckwheat (Fagopyrum tataricum) germplasms using principal component analysis and cluster analysis. The average seed size of tartary buckwheat germplasm was 5.2 × 3.4 mm, which is smaller than the seed size of common buckwheat. The dark browned colored ovate or elliptic shape was mostly observed in collected germplasm. The average content of rutin was 1,393 mg per 100 g dry weight (DW) in tartary buckwheat seed. Similarly, the flavonoid and polyphenol contents ranged from 253 to 2,669 and 209 to 1,823 mg, respectively, per 100 g DW in the collected germplasm. The three components (PC1, 2, and 3) of principal component analysis revealed 68.55% of the total variance of the collected accessions. Cluster analysis using descriptors showed that 74 accessions were clustered into five groups. The study showed that the most interesting resources for functional breeding programs are: Five resources (HLB1004, HLB1005, HLB1007, HLB1009, and HLB1013) due to the rich rutin, polyphenol, and flavonoid.

Bioavailability of plant pigment phytochemicals in Angelica keiskei in older adults: A pilot absorption kinetic study

  • Correa, Camila R.;Chen, C.Y. Oliver;Aldini, Giancarlo;Rasmussen, Helen;Ronchi, Carlos F.;Berchieri-Ronchi, Carolina;Cho, Soo-Muk;Blumberg, Jeffrey B.;Yeum, Kyung-Jin
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.550-557
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Angelica keiskei is a green leafy vegetable rich in plant pigment phytochemicals such as flavonoids and carotenoids. This study examined bioavailability of flavonoids and carotenoids in Angelica keiskei and the alteration of the antioxidant performance in vivo. SUBJECTS AND MATERIALS: Absorption kinetics of phytochemicals in Angelica keiskei were determined in healthy older adults (> 60 y, n = 5) and subjects with metabolic syndrome (n = 5). Subjects consumed 5 g dry Angelica keiskei powder encapsulated in gelatin capsules with a low flavonoid and carotenoid liquid meal. Plasma samples were collected at baseline, 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 h. Samples were analyzed for flavonoids and carotenoids using HPLC systems with electrochemical and UV detection, respectively, and for total antioxidant performance by fluorometry. RESULTS: After ingestion of Angelica keiskei increases in plasma quercetin concentrations were observed at 1-3 and 6-8 hr in the healthy group and at all time points in the metabolic syndrome group compared to baseline (P < 0.05). Plasma lutein concentrations were significantly elevated in both the healthy and metabolic syndrome groups at 8 hr (P < 0.05). Significant increases in total antioxidant performance were also observed in both the healthy and the metabolic syndrome groups compared to baseline (P < 0.05). CONCLUSIONS: Findings of this study clearly demonstrate the bioavailability of phytonutrients of Angelica keiskei and their ability to increase antioxidant status in humans.

Anti Proliferative Properties of Melissa officinalis in Different Human Cancer Cells

  • Jahanban-Esfahlan, Akram;Modaeinama, Sina;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5703-5707
    • /
    • 2015
  • Background: Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of their antioxidative properties. Melissa officinalis L. (MO), an aromatic and medicinal plant, is well known in thios context. However, toxicity against cancer cells has not been fully studied. Here, we investigated the selective anticancer effects of an MO extract (MOE) in different human cancer cells. Materials and Methods: a hydro-alcoholic extract of MO was prepared and total phenolic content (TPC) and total flavonoid content (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. MTT assays were used to evaluate cytotoxicity of different doses of MOE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) towards A549 (lung non small cell cancer cells), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all cancer cells, MOE reduced the cell viability to values below 33%, even at the lowest doses. In all cases, $IC_{50}$ values were below $5{\mu}g/ml$. The mean growth inhibition was 73.1%, 86.7%, 79.9% and 77.8% in SKOV3, MCF-7 and PC-3 and A549 cells, respectively. Conclusions: Our results indicate that a hydro-alcoholic extract of MO possess a high potency to inhibit proliferation of different tumor cells in a dose independent manner, suggesting that an optimal biological dose is more important than a maximally tolerated one. Moreover, the antiprolifreative effect of MO seems to be tumor type specific, as hormone dependant cancers were more sensitive to antitumoral effects of MOE.