• Title/Summary/Keyword: Flat vibration speaker

Search Result 10, Processing Time 0.028 seconds

Flexural Vibration of a Rectangular Plate with Orthotropically and Harmonically Varying Material Properties (재질분포가 직교이방 조화함수로 변하는 사각 평판의 굽힘 진동 해석)

  • 김진오;문병환
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.323-328
    • /
    • 2001
  • The paper describes a theoretical study on the flexural vibration of an elastic rectangular plate with periodically nonuniform material properties. The approximate solution of the natural frequency and mode shape has been obtained using the perturbation technique for sinusoidal modulation of the flexural rigidity and mass density. It has been shown that distributed modes exist in the plate which Is a two-dimensional model of the flat panel speaker.

  • PDF

Multidisciplinary Design Optimization for Acoustic Characteristics of a Speaker Diaphragm (스피커 진동판의 음향특성 다분야통합최적설계)

  • Kim, Sung-Kuk;Lee, Tae-Hee;Lee, Surk-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.763-766
    • /
    • 2004
  • Recently, various acoustic artifacts that contains speaker have been produced such as cellular phone. Speaker consists of diaphragm generating sound and coil vibrating diaphragm. Generally, good speaker means that it has a wide frequency range, high output power rate to input power and flat sound pressure level in specified frequency range. Acoustic characteristic was estimated through the experiment and computer simulation, or sound power was controlled with acoustic sensitivity in a natural frequency range fer last decade. However, the flatness of sound pressure level has not been considered to enhance the sound quality of a speaker. Tn this study, a method for speaker design is proposed for a good acoustic characteristic, which is flatness of SPL(sound pressure level) and wideness between the first and second natural frequency. SYSNOISE is used fer acoustic analysis and ANSYS is used for harmonic response analysis and modal analysis. Optimization for acoustic characteristics of a speaker diaphragm is performed using ModelCenter. All analyses are done within a frequency domain. And we confirm that the experimental and computational simulations have similar trend.

  • PDF

Flexural Vibration of a Plate with Periodically Nonuniform Material Properties (주기적 불균일 재질 평판의 굽힘 진동 해석)

  • Kim, Jin-O.;Moon, Byung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.737-742
    • /
    • 2000
  • The paper describes a theoretical study on the flexural vibration of an elastic rectangular plate with periodically nonuniform material properties. The approximate solution of the natural frequency and mode shape has been obtained using the perturbation technique for sinusoidal modulation of the flexural rigidity and mass density. It has been shown that distributed modes exist in the plate which is a two-dimensional model of the flat panel speaker.

  • PDF

Flexural Vibration of a Bar with Periodically Nonuniform Material Properties (재질이 주기적으로 불균일한 보의 굽힘 진동 해석)

  • 김진오;문병환;김준태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.73-78
    • /
    • 1999
  • The paper describes a theoretical study on the flexural vibration of an elastic flat bar with periodically nonuniform material properties. The approximate solution of the natura1 frequency and mode shape has been obtained using the perturbation technique for sinusoidal modulation of the flexural rigidify and mass density. The numerical solution obtained by using the finite element method verifies the trend of the approximate solution. It appears that distributed vibrations exist in the low modes, and this approach can be extended to the vibration analysis of the p1ate in the flat panel speaker.

  • PDF

Analysis of Microphonic Phenomenon for Shadow Mask in Flat TV by FEM (유한요소법에 의한 평면 TV 새도우마스크의 마이크로포닉 현상 해석)

  • Kim, Jung;Park, Soog-Kil;Kang, Bum-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.89-95
    • /
    • 2002
  • A shadow mask inside the Braun tube of a TV is sustained by springs attached to the glass panel, its vibration cause the picture image to discolor, which is called the microphonic phenomenon. It is found that it results from resonance when the natural frequency of the shadow mask coincides with that of built-in speaker sound. This paper describes experimental and analytical investigations by using FEM on the vibration problem of the shadow mask assembly. The simulation scheme may be efficiently used to develop a new design for a large-screen flat TV.

Vibration Pattern Prediction through The Analysis on the Break-up Mode and the Heat Transfer Relationship of Slim Speaker Diaphragm (슬림 스피커 진동판의 분할진동 모드와 열전달 관계 분석을 통한 진동 패턴 예측)

  • Kim, Hyun-Kab;Kim, Hiesik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.109-115
    • /
    • 2016
  • In this paper, In this paper, we use two methods to compare the slim speakers. That way, the diaphragm scan using laser and diaphragm photographed using a thermal imaging camera. Slim speaker has the structure of a flat plate type. Break-up mode by this characteristic is displayed in a larger size. Further, since the installation space is narrow, it has limited moving coil cooling. As a result, the break-up mode slim speakers, a significant impact on quality. In this study, try to connect the break-up mode of the diaphragm, the heat transfer mode of the diaphragm. Experiment for comparison, a two-step. The first step is to measure the divided vibration through the vibration plate scan. The second step measures the diaphragm photographed using a thermal imaging camera. Then, compare the results of both of the same frequency. Thus, comparing the heat transfer pattern and the pattern of break-up mode. Tend to be analysis of break-up mode from the pattern comparison, and document for the optimum design.