• Title/Summary/Keyword: Flat plate friction

Search Result 74, Processing Time 0.023 seconds

Convective Heat Transfer Correlations for the Compact Heat Exchanger with Circular Tubes and Flat Tubes-Plate Fins (원형관 및 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 상관관계식)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.291-299
    • /
    • 2010
  • Aspect-ratio-based numerical analysis is carried out to investigate the air-side convective heat transfer characteristics in compact heat exchangers with circular tubes and flat tubes-plate fins. The RNG $k-{\varepsilon}$ model is adopted for turbulence analysis. The numerical analysis is carried out for aspect ratios ranging from 3.06 to 5.44 and for Reynolds numbers ranging from 1,000 to 10,000. The calculated results indicate a correlation between the friction factor and Colburn j factor in the compact heat exchanger system for the range of aspect ratios under consideration. The results obtained for circular tubes and flat tubes-plate fins in this study can be utilized to realize the optimal design of an air conditioning system.

Study on the Drag Performance of the Flat Plates Treated by Antifouling Paints (방오 도료가 도장된 평판에 대한 항력 성능 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Cho, Seong-Rak;Ahn, Jong-Woo;Cho, Sang-Rae;Kim, Kyung-Rae;Chung, Young-Uok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • In the present study, the flat plate model test method is developed to evaluate the skin friction of the marine coating in the cavitation tunnel. Six-component force balance is used to measure the profile drag of the flat plate and strut. LDV(laser Doppler velocimetry) technique is also employed to evaluate the drag and to figure out the reason of the drag reduction. The flow velocities above the surface can be used to assess the skin friction, combined with direct force measurement. Since the vortical structure in the coherent turbulence structure influences on the skin friction in the high Reynolds number regime, the interaction between the turbulence structure and the surface wall is paying more attention. This sort of thing is important in the passive control of the turbulent boundary layer because the skin friction can't be determined only by wall condition. As complicated flow phenomena exist around a paint film, systematic measurement and analysis are necessary to evaluate the skin friction appropriately.

Experimental Investigation on the Drag Reduction for an Axi-symmetric Body by Micro-bubble and Polymer Solution

  • Yoon, Hyun-Se;Park, Young-Ha;Van, Suak-Ho;Kim, Hyung-Tae;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Experiments on friction drag reduction by injecting polymer (Polyethylene oxide) solution or micro-bubbles were carried out in the cavitation tunnel of KRISO. Two different drag reduction mechanisms were applied to a slender axi-symmetric body to measure the total drag reduction. And then the amount of friction drag reduction was estimated under the assumption that the reduction mechanisms were effective only to the friction drag component. As the result of the tests, polymer solution drag reduction up to 23% of the total drag was observed and it corresponds to about 35% of the estimated friction drag of the axi-symmetric body. This result matched reasonably well to that of the flat plate test "(Kim et al, 2003)". The normalization of the controlling parameters was tried at the end of this paper. Micro-bubble drag reduction was within 1% of its total drag. This unexpected result was quite different from that of the flat plate case "(Kim et at, 2003)" The possible reasons were discussed in this paper.

Al계 준결정 분말의 제조 및 응용

  • Kim, W. T.;Kim, D.H.;Lee, S.M.;E.Fleury;H.S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.133-155
    • /
    • 2002
  • 1. Quasicrystalline powders shows exotic physical and mechanical p properties 2. Applications: structural application: strengthening particles for composites C Coating application: wear resistance, low friction coefficient 3. For thermal spaying: material loss during process should be c considered to control chemical composition of deposit 4. Friction coefficient is strongly dependent on contact geometry F Friction coefficient from pin on plate: 0.1-0.2 Friction coe야icient from flat on plate: about 0.46. 5. Quasicrystalline materials show lower friction coefficient but higher w wear rate than corresponding values of $Cr_20_3$ coated layer. 6. Amorphous coating seems to be promising

  • PDF

The Effect of Surface Roughness on the Zero Pressure Gradient Turbulent Boundary Layers (영압력 구배 난류 경계층에서 표면조도가 미치는 영향)

  • Kim Moon-Kyung;Yoon Soon-Hyun;Kim Dong-Keon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.453-460
    • /
    • 2005
  • Experiments were conducted to investigate the effect of the surface roughness on the flat plate turbulent boundary layer. The square rods were installed at the leading edge to make surface roughness. The particle image velocimetry was used to measure the mean velocities and velocity fluctuation component. All measurements were made over a range of w/k=1. 2 5 and $Re_x=80.000{\sim}360,000$. Friction velocity was measured by using Clauser plot method. The level of turbulent intensities on roughness surface appears more strongly than that of turbulent intensities on flat plate. A correlation of boundary layer thickness in term of $Re_x$ and w/k are presented.

A Numerical Study on Performance of Air-to-Air Plastic Plate Heat Exchanger

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik;Kang, Hyoung-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.2
    • /
    • pp.52-60
    • /
    • 2009
  • The purpose of this research is to develop high efficiency plastic plate heat exchangers which can be substituted for conventional aluminum plate heat exchangers. Four simulation models of plastic plate heat exchangers are designed and simulated: that is, flat plate type, turbulent promoter type, corrugate type and dimple type heat exchanger. The flat plate type is designed as the reference model in order to evaluate how much thermal performance increases. The turbulent promoter type is fabricated with cylindrical-type vortex generators and rib-type turbulent promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. Numerical simulation is carried out using the FLUENT code. The flows are assumed as a three-dimensional, incompressible and turbulent model. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type. The tendency of numerical simulation results is in good agreement with that of the experimental results.

Measurement of Wall Shear Stress in Transitional Boundary Layer on a Flat Plate Using Computational Preston Tube Method (CPM을 이용한 평판위 천이경계층에서 벽 마찰응력의 계측)

  • 전우평;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.240-250
    • /
    • 1995
  • A CPM (computational preston tube method) was developed to measure wall shear stress in a transitional boundary layer on a flat plate using Preston tubes. Correlation for the displacement factor of Preston tubes was improved for a CPM to be used in the transitional boundary layer. The distribution of skin-friction coefficient was reasonably predicted in the uniform free stream of 3.1% turbulence intensity. Reasonable and accurate estimation of displacement factor of Preston tubes was found to be of crucial importance for the CPM, especially in the laminar boundary layer. The mean velocity profiles of the boundary layer on the plate were also measured and presented.

Analysis of Convective Heat Transfer Characteristics for the Compact Heat Exchanger with Flat Tubes and Plate Fins Having a Non-symmetric Staggered Arrangements (비대칭 엇갈림 배열로 구성된 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 특성 해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.318-325
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchanger with flat tubes and continuous plate fins having a symmetric and non-symm etric staggered arrangements. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental results. In order to investigate the flow and heat transfer features by periodic boundary conditions, the three blocks were used. Predicted heat transfer coefficients between the three blocks are similar while there are relatively differences, compared with the experimental data. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Flat Tubes and Plate Fins According to the Aspect Ratio (종횡비에 따른 납작관-평판휜 형상의 밀집형 열교환기 내공기 측 대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.695-703
    • /
    • 2008
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with flat tubes and continuous plate fins according to the aspect ratio. RNG k-$\varepsilon$ model is applied for turbulence analysis. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous correlations for circular tubes. The numerical conditions are considered for the aspect ratios ranging from 3.06 to 5.44 and Reynolds number ranging from 1000 to 10,000. The results showed that heat transfer coefficients decreased with the increase of aspect ratio. From the calculated results a correlation of Colburn j factor for the considered aspect ratio in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Investigation of Turbulence Characteristics of Defect Law Region over Flat plate (평판 위 흐름 Defect Law 영역의 난류 특성 연구)

  • Suh, Sung-Bu;Park, Il-Ryong;Jung, Kwang-Hyo;Lim, Jung-Gwan;Kim, Kwang-Soo;Kim, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.