• Title/Summary/Keyword: Flat contact

Search Result 341, Processing Time 0.033 seconds

Structural Changes of PVDF Membranes by Phase Separation Control (상분리 조절에 의한 PVDF막의 구조 변화)

  • Lee, Semin;Kim, Sung Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

A Study for the Development of a Brassiere Pattern for Chinese Adult Women in their Early 20s in Shanghai (중국 성인여성용 브래지어 원형 개발 연구 -상해지역 20대 전반 여성을 중심으로-)

  • Cha, Su-Joung;Sohn, Hee-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.1
    • /
    • pp.50-66
    • /
    • 2010
  • This Shanghai region study is a sample survey of female college students in their early 20s. This study collected and analyzed the information of shapes through a direct contact survey to understand the breast figures and the measurements of bodies to provide basic information to improve brassiere production for adult females in China. Data was analyzed through a SAS 9.0. The characteristic of the final brassiere pattern that had been corrected and complemented from the results of the $l^{st},\;2^{nd},\;3^{rd}$, and $4^{th}$ fitting tests is defined as a brassiere inserted with a round wire that has the 3/4cup to wrap the bust area by about 3/4. It consists of an upper and lower nonwoven fabric cup that has a flat-shaped wing of a circular dart. The drawing method of the pattern of this brassiere is applied with the conditions to cover the body naturally under the diverse and organic relations of the material factor of stretch material and wire, functional factor, and sewing factor. The final pattern is created as a bigger angle of wing pattern and a short inner side diameter because there are more Chinese women with a back of bending figure compared to Korean women.

SINTERED $Al_{2}O_{3}$-TiC SUBSTRATE FOR THIN FILM MAGNETIC HEAD

  • Nakano, Osamu;Hirayama, Takasi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1998.04b
    • /
    • pp.6-6
    • /
    • 1998
  • In 1957, the first magnetic disk drive compatible with a movable head was introduced as an external file memory device for computer system. Since then, magnetic disks have been improved by increasing the recording density, which has brought about the development of a high performance thin film magnetic head. The thin film magnetic head has a magnetic circuit on a ceramic substrate using IC technology. The physical property of the substrate material is very important because it influences the tribology of head/disk interface and also manufacturing process of the head. $Al_{2}O_{3}$-TiC ceramics, so called ALTIC, is known to be one of the best substrate materials which satisfies this property requirement. Even though the head is not in direct contact with the disk, frequent instantaneous contacts are unavoidable due to its high rotating speed and the close gap between them. This may cause damage in the magnetic recording media and, thus, it is very important that the magnetic head has a good wear resistance. $Al_{2}O_{3}$-TiC ceramics has an excellent tribological property in head/disk interface. Manufacturing process of thin film head is similar to that of IC, which requires extremely smooth and flat surface of the substrate. The substrate must be readily sliced into the heads without chipping. $Al_{2}O_{3}$-TiC ceramics has excellent machineability and mechanical properties. $Al_{2}O_{3}$-TiC ceramics was first developed at Nippon Tungsten Co. as cutting tool materials in 1968, which was further developed to be used as the substrate materials for thin film head in collaboration with Sumitomo Special Metals Co., Ltd. in 1981. Today, we supply more than 60% of the substrates for thin film head market in the world. In this paper, we would like to present the sintering process of $Al_{2}O_{3}$-TiC ceramics and its property in detail.

  • PDF

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Study on the Out-of-Plane Deformation Measurement Condition through Comparison Photosensitivity (광감도 비교를 통한 면외 변형 측정 조건에 대한 연구)

  • Kim, Hyun Ho;Kang, Chan Geun;Lee, Hyun Jun;Jung, Hyun Chul;Kim, Kyeong Suk;Hong, Chung Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.807-813
    • /
    • 2015
  • In the present study, an interferometer system, which integrates the laser sensitivity control technique based on the theory of electronic speckle pattern interferometry, one of non-contact non-destructive analysis methods, was developed. This interferometry system receives an image from CCD cameras for each reference and object, and compares the photosensitivity of the object and reference images from imagification. For the purpose of this study, the photosensitivity of object and reference light is measured with power meters, and the amount of light was controlled with an ND filter with a reference light port matching photosensitivity. Using the plate specimen as the object, 0.6, 0.9, 1.2, and $1.5{\mu}m$ of out-plane deformation was made, and images were compared according to the difference in photosensitivity. After analysis, larger object deformations showed larger numbers of stripe patterns. Images became clearer and data error was reduced when the photosensitivity of object and reference light matched.

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.

Deformation Behavior of Curling Strips on Tearing Tubes (테어링 튜브 컬의 변형 거동 예측 기법 연구)

  • Choi, Ji Won;Kwon, Tae Soo;Jung, Hyun Seung;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1053-1061
    • /
    • 2015
  • This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

Preparation of Rayon Filament based Woven Fabric and PCM Treatment for Developing Cool Touch Summer Clothing Material (여름철 냉감성 의류소재 개발을 위한 비스코스 레이온 중심의 직물 제조 및 PCM 가공)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.326-332
    • /
    • 2014
  • To develop cool touch feeling fabrics for summer clothing material, it was manufactured several compositions of woven fabrics, having rayon multi-filament yarn (non-twisted) as warp and various kinds of yarn, such as viscose rayon multi-filament yarn (twisted), tencel$^{(R)}$ spun yarn, PET high absorbance quick dry filament yarn, and PET based rayon-like yarn, as weft. After preparing the fabrics, basic properties of the fabrics were investigated, such as air-permeability, tensile strength, absorption rate, drying rate, etc. Also, surface warm / cool sensations of the woven fabrics were assessed by Qmax Warm / Cool Touch Tester. It was observed that the fabrics composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn (weft) showed excellent surface cool touch sensation-the highest Qmax value. This is because the fabric having flat shaped PET high absorbance quick dry filament shows the largest contact area with Qmax measuring plate. And, the fabric also showed superior high absorbance and quick dry property as expected. In addition, we treated phase change material (PCM) on the surface of the fabric composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn(weft) to improve the cool touch feeling. However, the surface cool touch feeling was impaired by resin treated with PCM during the finishing process.

Enhanced Hydrophilicity of Polyethersulfone Membrane by Various Surface Modification Methods (다양한 표면개질을 이용한 폴리에테르설폰 막의 친수성 향상)

  • Park, So Jung;Hwang, Jun Seok;Choi, Won-Kil;Lee, Hyung Keun;Huh, Kang Moo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.205-212
    • /
    • 2014
  • Polyethersulfone (PES) membranes were modified by various physico-chemical modification methods to enhance the surface hydrophilicity for application as a separation membrane to separate and collect water vapor from the flue gas. Homogeneous PES flat-sheet membranes were prepared and modified by acid treatment, blending and plasma treatment for hydrophilic surface modification. The surface characteristics of the modified PES membranes were evaluated by ATR-FTIR, XPS, SEM and contact angle measurements. No significant change in hydrophilicity was observed for the PES membranes modified by acid treatment with sulfuric acid or blending with various compositions of poloxamer as an amphiphilic PEO-PPO-PEO tri-block copolymer. On the other hand, Ar plasma treatment led to a significant increase in the hydrophilicity of the surface, depending on the plasma treatment time. As a result, the PES membrane could be the most efficiently surface-treated by applying the plasma treatment for enhancing their surface hydrophilicity.

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF