• Title/Summary/Keyword: Flat Die

Search Result 103, Processing Time 0.03 seconds

Fabrication of Ultra Small Size Hole Array on Thin Metal Foil (초미세 금속 박판 홀 어레이 가공)

  • Rhim S. H.;Son Y. K.;Oh S. I.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.9-14
    • /
    • 2006
  • In the present research, the simultaneous punching of ultra small size hole of $2\~10\;{\mu}m$ in diameter on flat rolled thin metal foils was conducted with elastic polymer punch. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of 1.5fm in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The process set-up is similar to that of the flexible rubber pad farming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions. The effects of the wafer die hole dimension and heat treatment of the workpiece on ultra small size hole formation of the thin foil were discussed. The process condition such as proper die shape, pressure, pressure rate and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole away in a one step operation.

Evaluation of vibration property and machinability of spindle system in high speed machining center (고속 머시닝센터의 주축계 진동특성과 가공성 평가)

  • 김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.16-21
    • /
    • 2002
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation fer the HMC is not sufficiently performed and the efficient cutting conditions aren't selected, a great loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented from the analysis of acceleration in idling. The Machinability fur the TiAlN coated flat end mill and STD11( $H_{R}$C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions and slenderness ratio and a low response of tool dynamometer in high speed is proved. The resonance spindle speed is identified through the tool wear and natural frequency test.t.

  • PDF

Form Error Prediction in Side Wall Milling Considering Tool Deflection (측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측)

  • 류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

Studies on the Natural Mortality of the Young Short Necked Clam, Tapes japonica-I. Seaonal Variation of the tidal Temperature, Sainity , and the Effect of Overflowing Fresh Water on the Subterranean Salinity of the Tidal Flat at Low Tide (바지락 치패의 폐사에 관한 연구-I 간척지의 간출시에 있어서의 온도, 염분변화와 유입하천수의 지하염분에 미치는 영향)

  • CHOE, Sang
    • The Korean Journal of Zoology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1966
  • Frequently , large masses of the young short necked clam, Tapes japonica , die at their tidal flats in summer and this phenomenon has not been explained clearly. The purpose of the present investigation is to study the thermal condition and the chlorinity level of tidal flats in which the young clam appears to be injured. A study is also mad efor the burrowing organism in the lower layer of the esturay over which the fresh water flow during the low tide. Observation are made at five places of the tidal flat near Ikawazu Fixheries Laboratory of Tokyo University during the ebb and flow tide period of the spring tide. The diurnal and monthly changes of tidal temperatures and chlorinities are measured. Results of the study are ; 1. The surface temperature of the tidal flat increases with the ebb tide, reaches the highest between 12-14PM, and gradually decreases thereafter. The temperatures of tidal flat below 5 and 10 cm increase gradually until the flow tide reaches the surface. 2. At the spring tide in summer , the diurnal change of surface of the tidal flat temperature is very extensive ; it reaches 37-39$^{\circ}C$ in August. At the depths of 5 and 10 cm the temperature remains at 33 $^{\circ}C$ and 31$^{\circ}C$ , respectively. 3. The chlorinity of the tidal flat is higher during May through June and lower July through August, and this seems to be related to the amount of rainfall. 4. The chlorinity of the surface of tidal flat increases slightly during the ebb and flow tide periods. The observed higher chlorinity of surface of the tidal flat was 18.82% Cl. 5. At near the esturay, the fresh water that overflows the tidal flat affects the chlorinity of the surface but no such influence to the depth of the flat. 6. From above observations, it is assumed that the young short necked clam in the tidal flat could be exposed to the severe change of environmental conditions. The high temperature of the tidal flat in summer and the low chlorinity of it at flood period may be considered as the change in environment.

  • PDF

Effect of the Moisture Content and Pellet Mill Type on the Physical and Chemical Characteristics of Italian ryegrass Pellet (펠렛밀과 수분함량이 이탈리안 라이그라스 펠렛의 물리적 특성 및 화학적 성상에 미치는 영향)

  • Moon, Byeong Heoun;Shin, Jong Seo;Park, Hyung Soo;Park, Byeong Ki;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • The objective of this study was to determine the effect of the moisture content and pellet mill type on the physical and chemical characteristics of Italian ryegrass (IRG) pellet. Moisture content of raw material significantly (p<0.05) affected IRG pellet formation. Moisture content at 25% was the best condition for IRG pellet formation in terms of shape, power load and temperature changes. The hardness of pellet was decreased when moisture content was increase. However, the hardness of pellet was not affected by pellet mill type. Moisture content at 30% dramatically (p<0.05) decreased the durability compared to moisture content at 25%. Dry matter content of IRG pellet was increased (p<0.05) after pelleting. Total count of microorganism was decreased in pellet due to pressure heat and moisture losses during the pelleting process. These results indicated that the proper moisture content of Italian ryegrass pelleting would be at 25%. In addition, Roll & flat die type would be more suitable than Ring die and Die & flat die type in IRG pelleting. Pelleting works would be beneficial for improving forage quality and long storage.

Scale-up Fabrication of Flat Sheet Membrane by Using a Roll-to-Roll Process (롤투롤 공정을 활용한 평판형 분리막의 대면적 제조 연구)

  • Dong Hyeok Baek;Youngmin Yoo;In-Chul Kim;You-In Park;Seung-Eun Nam;Young Hoon Cho
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.79-86
    • /
    • 2024
  • The flat sheet membrane, one of the representative forms of polymeric membranes, is widely used from material research in laboratories to commercial membrane production due to its ease of fabrication. Porous polymeric flat sheet membranes used in microfiltration and ultrafiltration are mainly fabricated through phase separation processes, utilizing non-solvent-induced and vapor-induced phase separation methods. However, due to the nature of phase separation processes, variations between samples can easily occur depending on the surrounding environment and the experimenter, making it difficult to ensure reproducibility. Therefore, for scaling up and ensuring reproducibility of developed membrane fabrication technologies, there is a need for a controlled environment continuous large-area production device, such as a roll-to-roll manufacturing system. This research compared the changes in membrane characteristics due to differences in manufacturing environments when scaling up laboratory-scale fabrication technologies to roll-to-roll processes using knife and slot die coaters. By optimizing the continuous manufacturing process factors, uniformity of the membrane was ensured during large-area production.

A Study on the Design of Door Module PNL Using CAE and Inverse Compensation for Warpage (휨방지를 위한 CAE와 역보정을 이용한 Door Module PNL설계에 관한 연구)

  • Kim, Doo-Tae;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2018
  • Korea's automobile industry, which has grown rapidly to become the world's fifth-largest automobile producer, To cope with environmental pollution and energy problems in order to prevail competitive edge in global market We are investing a lot of research personnel and costs. Among them, for realizing alternative light weight It is a part of the automobile module system that has achieved the technological development before the breakthrough in the injection molding process in the press process. Door module PNL was the subject of research. The door module PNL is expected to cause warpage before the mold production due to the thin and flat product characteristics and fiber orientation characteristic of the material. In this paper, CAE analysis and reverse correction tool Design. CAE analysis to obtain the results of weld line position, bending position and deformation value Through the correction tool, think3, the original product was modified before the mold production to improve the completeness of the parts. In fiber orientation, the position and size of the cooling channel in the mold, the position and size of the gate, Temperature, pressure, time, and work environment. Compared with the result of CAE analysis, the product that was reverse-corrected by Think3 was manufactured, and injection molding was performed. Injection molding products were tested 24 hours later. 3.5 mm to 7.0 mm, and under the fixed condition, the deviation was from 1.1 mm to 1.5 mm. Unlike the CAE analysis, the deviation of the actual injection pressure and the cooling temperature, the fiber orientation of the material, In order to solve this problem, it is necessary to compare the injection conditions with the database, I knew I had to catch the standard.

A Study on the Computer-Aided Design of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys (알루미늄합금 형재의 열간압출 금형설계 자동화에 관한 연구)

  • Choe, Jae-Chan;Kim, Byeong-Min;Lee, Jin-Hui;Jo, Hae-Yong;Lee, Jong-Su;Hong, Seong-Seok;Jo, Nam-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.26-36
    • /
    • 1990
  • This paper describes the Computer Aided Design (CAD) of dies for direct hot extrusion of structural shapes such as Z's and U's from aluminum alloys. A simple analysis of the direct extrusion process is developed and used to formulate a disign procedure for determining the optimal shape of the extrusion dies. A computer software system has been developed to design flat-faced dies for non-lubricated hot extrusion process. This software is a system of computer programs which are written to logical design procedure. Computer programs are based on empirical and analytical relationships, as well as on established knowledge based system. In the interactive mode of operation, the reaults at various tages of the design process are plotted on a screen. At any stage, the designer can interact with the computer to change or modify the design, based on his experience. The output from the program is (a) the design of the flat-faced die, (b) information on extrusion load, reduction ratio, and other process variables, etc. The implementation of this CAD system is expected to (a) provide scientific basis and rationalize the die design procedure, (b) optimize extrusion variables to maximize yield and production rate, (c) improve utilization of existing press capacity, etc.

  • PDF

Analysis and Experiments on the Thread Rolling Process for Micro-Sized Screws Part I: Process Parameter Analysis by Finite-Element Simulation (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part I: 유한요소 해석기반 공정변수 영향분석))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.581-587
    • /
    • 2011
  • The production of high-precision micro-sized screws, used to fasten parts of micro devices, generally utilizes a cold thread-rolling process and two flat dies to create the teeth. The process is fairly complex, involving parameters such as die shape, die alignment, and other process variables. Thus, up-front finite-element(FE) simulation is often used in the system design procedure. The final goal of this paper is to produce high-precision screw with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ (M0.8${\times}$P0.2) by a cold thread rolling process. Part I is a first-stage effort, in which FE simulation is used to establish process parameters for thread rolling to produce micro-sized screws with M1.4${\times}$P0.3, which is larger than the ultimate target screw. The material hardening model was first determined through mechanical testing. Numerical simulations were then performed to find the effects of such process parameters as friction between work piece and dies, alignment between dies and material. The final shape and dimensions predicted by simulation were compared with experimental observation.