• Title/Summary/Keyword: Flashover rate

Search Result 44, Processing Time 0.024 seconds

The Calculation of Lightning Flashover rate of 345kV/154kV Transmission Tower (345kV 및 154kV 송전철탑의 뇌사고율 예측계산)

  • Shim, E.B.;Woo, J.W.;Kwak, J.S.;Min, B.W.;Hwang, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.452-454
    • /
    • 2001
  • This paper described the calculation results of lightning flashover rate on the 345kV and 154kV transmission system of KEPCO. The back-flashover rate and shielding failure rate was calculated by FLASH(lightning flashover rate calculation program from IEEE) and KEPRI's own program which is based on the EGM(Electro Geometrical Model) method. The estimated lightning flashover late of 345kV transmission system of double circuit was 1.0 flash per 100km-year, and the lightning flashover rate of 154kV transmission line was 2.0 flash Per 100km-year approximately.

  • PDF

New Simulation Method of Flashover Rate by Connection of EMTP and MATLAB

  • Seo, Hun-Chul;Han, Joon;Choi, Sun-Kyu;Lee, Byung-Sung;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.602-608
    • /
    • 2016
  • Because of the random characteristics of lightning, the Monte Carlo method is applied to estimate the flashover rate due to lightning, however, the simulations using previous methods are difficult to both beginner and expert in power corporations. Therefore, this paper proposes the new and easy method to simulate the flashover rate by connection of electromagnetic transients program (EMTP) and MATLAB. The magnitude of a lightning strike is based on a curve measured in the field, while the classification of direct and indirect lightning depends on the striking distance. In a Korean distribution system, the flashover rate induced by lightning is simulated using proposed method. Simulations of the footing resistance according to the existence of an overhead ground wire (OHGW) are performed and the simulation results are discussed. The simulation results are compared with findings obtained with the IEEE Flash 2.0 program.

Parameter Effects on the Time to Reach Flashover Conditions in Single Room Fires (건물화재의 플래시오버 도달 시간에 영향을 미치는 인자들에 관한 연구)

  • Kim, Hyeong-Jin;Lilley, David-G.;Baek, Byung-Joon;Pak, Bock-Choon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1384-1388
    • /
    • 2003
  • In structural fires, flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. An investigation of parameter effects on the time to reach flashover conditions in a typical single room fire is undertaken using a zone method (FAST) and Thomas method. Major parameters affecting the time to reach flashover are found to be fire growth rate, ventilation opening area and internal room surface. The results of the FAST and the Thomas Method give very similar results of the time to reach flashover..

  • PDF

A Study on the Correlation of Analysis between Flashover and Smoke Production Rate in Building Structure (건축구조물에 있어서 플래시오버와 연기발생량의 상관관계 분석에 관한 연구)

  • Seo, Dong-Goo;Kim, Dong-Eun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.236-237
    • /
    • 2013
  • The fire safety design of performance is fire behavior inside buildings must be scientifically described and systemized as a theory, thereby allowing application to fire safety design of buildings. In this study, experiment of fire behavior according to disposition of combustibles were performed for correlation analysis between flashover and smoke production rate in building structure. As a result, smoke production rates is happened more than 80 m2/s in compartment(ISO 9705). Also, even if the fire load for flashover to if occur smoke did not, which confirmed that the delay time of occurrence.

  • PDF

Analysis of Effect on Lightning Surge according to the Grounding Condition of Overhead Ground Wire in Distribution System (국내 배전계통의 가공지선 접지조건에 따른 뇌서지 영향 분석)

  • Han, Joon;Kim, Chul-Hwan;Seo, Hun-Chul;Choi, Sun-Kyu;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.331-337
    • /
    • 2014
  • The Korean distribution system consists of overhead ground wire (OHGW), phase conductors and neutral wire. Especially, OHGW is installed over the phase conductors to protect distribution system from the lightning surge. The flashover rate and the magnitude of lightning overvoltage on distribution system can be affected by grounding condition of OHGW such as grounding resistance and grounding interval. In this paper, we conduct an analysis of lightning overvoltage and flashover rate according to the grounding condition of OHGW. The distribution system and lightning surge are modeled by using ElectroMagnetic Transient Program (EMTP). Also, the Monte Carlo method is applied to consider random characteristics of lightning, and the flashover rate is calculated based on IEEE std. 1410. The simulations are performed by changing the grounding resistance and interval of OHGW and the simulation results are analyzed.

Analysis of Flashover Rate by Lightning in Korea Distribution Line using CRIEPI Method (CRIEPI 방식을 이용한 국내 가공 배전선로에서의 뇌 섬락률 산정)

  • Choi, Sun-Kyu;Seo, Hun-Chul;Han, Jun;Kim, Chul-Hwan;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper analyzes the flashover rate by lightning in Korea distribution system. Because of random characteristics of lightning, the Monte Carlo method is applied to estimate the lightning performance. The magnitude of lightning stroke is based on the curve measured in field. The classification of direct and indirect lightning depends on the striking distance. The striking distance and flashover rate are calculated by using the method based on Central Research Institute of Electric Power Industry(CRIEPI). The distribution system and lightning is modeled by using EMTP and MATLAB, and the accuracy of modeling is discussed. The simulations for the various spacing between two adjacent surge arresters and the various grounding resistance of GW according to the existence of GW are performed and the simulation results are analyzed.

A Study on the Prediction of Flashover Time and Heat Release Rate(HRR) for Building Interior Materials (건축 내장재의 Flashover시간 및 열방출량 예측에 관한 연구)

  • 하동명
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.30-38
    • /
    • 2004
  • An important characteristics during fire growth is the phenomena of flashover, which is the transition from the local combustion to the full-room fire. The aim of this study is to predict the flashover times, the ignition times and HRR(heat release rate) of flashover for building interior materials. By using the literature data and RSM(response surface methodology), the new equations for predicting the flashover time, the ignition time and the HRR of building interior materials are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated flashover times were 38.74sec and 51.24sec respectively, and the correlation coefficient was 0.975. The A.A.P.E and the A.A.D of the reported and the calculated ignition times were 10.96sec and 1.97sec, and the correlation coefficient was 0.962. Also the A.A.P.E and the A.A.D. of the reported and the calculated the HRR of flashover by means of times were 29.92 and 514, and the correlation coefficient was 0.830. The values calculated by the proposed equations were in good agreement with the literature data. Therefore, it is expected that this proposed equations will support the use of the research for other building interior materials.

A Flashover Prediction Method by the Leakage Current Monitoring in the Contaminated Polymer Insulator (누설 전류 모니터링에 의한 오손된 고분자 애자에서의 섬락 예지 방법)

  • 박재준;송영철
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.364-369
    • /
    • 2004
  • In this Paper, a flashover prediction method using the leakage current in the contaminated EPDM distribution polymer insulator is proposed. The leakage currents on the insulator were measured simultaneously with the different salt fog application such as 25g, 50g, and 75g per liter of deionized water. Then, the measured leakage currents were enveloped and transformed as the CDFS using the Hilbert transform and the level crossing rate, respectively. The obtained CDFS having different gradients(angles) were used as a important factor for the flashover prediction of the contaminated polymer insulator. Thus, the average angle change with an identical salt fog concentration was within a range of 20 degrees, and the average angle change among the different salt fog concentrations was 5 degrees. However, it is hard to be distinguished each other because the gradient differences among the CDFS were very small. So, the new weighting value was defined and used to solve this problem. Through simulation, it Is verified that the proposed method has the capability of the flashover prediction.

Study on Correlation between flashover and smoke production rate in real scale reaction-to-fire test (실대규모 화재시험시 플래시오버와 연기발생율간의 상관성 연구)

  • Park, Kye-Won;Im, Hong-Soon;Jeong, Jae-Gun;Kim, Woon-Hyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.289-296
    • /
    • 2010
  • This study is aiming at analyzing correlation between flashover's time and maximum smoke production rate's time on sandwich panel specimens. For this analysis, KS F ISO 137481-1 has been performed for 23 kinds of sandwich panels which mainly consist of EPS, PIR, PUR, Glass wool and so on. KS F ISO 13784-1 represents real scale reaction-to-fire test and focuses on measuring flashover phenomenon rather than other tests as like ISO 5660-1 and SBI.

  • PDF

Fire Characteristics of Composites for Interior Panels Using Cone calorimeter (콘칼로리미터를 이용한 내장판용 복합재료의 화재특성)

  • 이철규;정우성;이덕희
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Composite materials were used widely due to merit of light weight, low maintenance cost and easy installation. But it is the cause of enormous casualties to men and properties because of weak about the fire. Particularly, it is more serious in case of subway train installed composite materials. For this reason, experimental comparison has been done fur measuring heat release rate(H.R.R) and smoke production rate(S.P.R) of interior panels of electric motor car using cone calorimeter. A high radiative heat flux of 50kW/㎡ was used to bum out all materials and to simulate the condition of fully developed fire case in the tests. It was observed that Heat Release Rate and Smoke Production Rate curves were dependent on the kinds of the interior materials. From the heat release rate curves, the sustained ignition time, peak heat release rate and total heat release rate were deduced, These data are useful in classifying the materials by calculating two parameters describing the possibility to flashover.