• Title/Summary/Keyword: Flash SSD

Search Result 138, Processing Time 0.024 seconds

A Recovery Scheme of SSD-based Databases using Snapshot Log (스냅샷 로그를 사용한 SSD 기반 데이터베이스 복구 기법)

  • Lim, Seong-Chae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.85-91
    • /
    • 2019
  • In this paper, we propose a new logging and recovery scheme that is suited for the high-performance transaction processing system base on flash memory storage. The proposed scheme is designed by considering flash's I/O characteristic of asymmetric costs between page update/read operations. That is, we substitute the costly update operation with writing and real-time usage of snapshot log, which is for the page-level physical redo. From this, we can avoid costly rewriting of a dirty page when it is evicted form a buffering pool. while supporting efficient revery procedure. The proposed scheme would be not lucrative in the case of HDD-based system. However, the proposed scheme offers the performance advance sush as a reduced number of updates and the fast system recovery time, in the case of flash storage such as SSD (solid state drive). Because the proposed scheme can easily be applied to existing systems by saving our snapshot records and ordinary log records together, our scheme can be used for improving the performance of upcoming SSD-based database systems through a tiny modification to existing REDO algorithms.

Buffer Policy based on High-capacity Hybrid Memories for Latency Reduction of Read/Write Operations in High-performance SSD Systems

  • Kim, Sungho;Hwang, Sang-Ho;Lee, Myungsub;Kwak, Jong Wook;Park, Chang-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, an SSD with hybrid buffer memories is actively researching to reduce the overall latency in server computing systems. However, existing hybrid buffer policies caused many swapping operations in pages because it did not consider the overall latency such as read/write operations of flash chips in the SSD. This paper proposes the clock with hybrid buffer memories (CLOCK-HBM) for a new hybrid buffer policy in the SSD with server computing systems. The CLOCK-HBM constructs new policies based on unique characteristics in both DRAM buffer and NVMs buffer for reducing the number of swapping operations in the SSD. In experimental results, the CLOCK-HBM reduced the number of swapping operations in the SSD by 43.5% on average, compared with LRU, CLOCK, and CLOCK-DNV.

A High Performance Flash Memory Solid State Disk (고성능 플래시 메모리 솔리드 스테이트 디스크)

  • Yoon, Jin-Hyuk;Nam, Eyee-Hyun;Seong, Yoon-Jae;Kim, Hong-Seok;Min, Sang-Lyul;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.378-388
    • /
    • 2008
  • Flash memory has been attracting attention as the next mass storage media for mobile computing systems such as notebook computers and UMPC(Ultra Mobile PC)s due to its low power consumption, high shock and vibration resistance, and small size. A storage system with flash memory excels in random read, sequential read, and sequential write. However, it comes short in random write because of flash memory's physical inability to overwrite data, unless first erased. To overcome this shortcoming, we propose an SSD(Solid State Disk) architecture with two novel features. First, we utilize non-volatile FRAM(Ferroelectric RAM) in conjunction with NAND flash memory, and produce a synergy of FRAM's fast access speed and ability to overwrite, and NAND flash memory's low and affordable price. Second, the architecture categorizes host write requests into small random writes and large sequential writes, and processes them with two different buffer management, optimized for each type of write request. This scheme has been implemented into an SSD prototype and evaluated with a standard PC environment benchmark. The result reveals that our architecture outperforms conventional HDD and other commercial SSDs by more than three times in the throughput for random access workloads.

A Prediction-Based Data Read Ahead Policy using Decision Tree for improving the performance of NAND flash memory based storage devices (낸드 플래시 메모리 기반 저장 장치의 성능 향상을 위해 결정트리를 이용한 예측 기반 데이터 미리 읽기 정책)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.4
    • /
    • pp.9-15
    • /
    • 2022
  • NAND flash memory is used as a medium for various storage devices due to its high data processing speed with low power consumption. However, since the read processing speed of data is about 10 times faster than the write processing speed, various studies are being conducted to improve the speed difference. In particular, flash dedicated buffer management policies have been studied to improve write speed. However, SSD(solid state disks), which has recently been used for various purposes, is more vulnerable to read performance than write performance. In this paper, we find out why read performance is slower than write performance in SSD composed of NAND flash memory and study buffer management policies to improve it. The buffer management policy proposed in this paper proposes a method of improving the speed of a flash-based storage device by analyzing the pattern of read data and applying a policy of pre-reading data to be requested in the future from NAND flash memory. It also proves the effectiveness of the read-ahead policy through simulation.

Design and Implementation of Flash Translation Layer with O(1) Crash Recovery Time (O(1) 크래시 복구 수행시간을 갖는 FTL의 설계와 구현)

  • Park, Joon Young;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.639-644
    • /
    • 2015
  • The capacity of flash-based storage such as Solid State Drive(SSD) and embedded Multi Media Card(eMMC) is ever-increasing because of the needs from the end-users. However, if a flash-based storage crashes, such as during power failure, the flash translation layer(FTL) is responsible for the crash recovery based on the entire flash memory. The recovery time increases as the capacity of the flash-based storages increases. We propose O1FTL with O(1) crash recovery time that is independent of the flash capacity. O1FTL adopts the working area technique suggested for the flash file system and evaluates the design on a real hardware platform. The results show that O1FTL achieves a crash recovery time that is independent of the capacity and the overhead, in terms of I/O performance, and achieves a low P/E cycle.

Performance Analysis of Flash Memory SSD with Non-volatile Cache for Log Storage (비휘발성 캐시를 사용하는 플래시 메모리 SSD의 데이터베이스 로깅 성능 분석)

  • Hong, Dae-Yong;Oh, Gi-Hwan;Kang, Woon-Hak;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.107-113
    • /
    • 2015
  • In a database system, updates on pages that are made by a transaction should be stored in a secondary storage before the commit is complete. Generic secondary storages have volatile DRAM caches to hide long latency for non-volatile media. However, as logs that are only written to the volatile DRAM cache don't ensure durability, logging latency cannot be hidden. Recently, a flash SSD with capacitor-backed DRAM cache was developed to overcome the shortcoming. Storage devices, like those with a non-volatile cache, will increase transaction throughput because transactions can commit as soon as the logs reach the cache. In this paper, we analyzed performance in terms of transaction throughput when the SSD with capacitor-backed DRAM cache was used as log storage. The transaction throughput can be improved over three times, by committing right after storing the logs to the DRAM cache, rather than to a secondary storage device. Also, we showed that it could acquire over 73% of the ideal logging performance with proper tuning.

A method for optimizing lifetime prediction of a storage device using the frequency of occurrence of defects in NAND flash memory (낸드 플래시 메모리의 불량 발생빈도를 이용한 저장장치의 수명 예측 최적화 방법)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2021
  • In computing systems that require high reliability, the method of predicting the lifetime of a storage device is one of the important factors for system management because it can maximize usability as well as data protection. The life of a solid state drive (SSD) that has recently been used as a storage device in several storage systems is linked to the life of the NAND flash memory that constitutes it. Therefore, in a storage system configured using an SSD, a method of accurately and efficiently predicting the lifespan of a NAND flash memory is required. In this paper, a method for optimizing the lifetime prediction of a flash memory-based storage device using the frequency of NAND flash memory failure is proposed. For this, we design a cost matrix to collect the frequency of defects that occur when processing data in units of Drive Writes Per Day (DWPD). In addition, a method of predicting the remaining cost to the slope where the life-long finish occurs using the Gradient Descent method is proposed. Finally, we proved the excellence of the proposed idea when any defect occurs with simulation.

A Hetero-Mirroring Scheme to Improve I/O Performance of High-Speed Hybrid Storage (고속 하이브리드 저장장치의 입출력 성능개선을 위한 헤테로-미러링 기법)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4997-5006
    • /
    • 2010
  • A flash-memory-based SSDs(Solid State Disks) are one of the best media to support portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major database storage components for desktop and server computers. However, we need to improve traditional storage management schemes based on HDD(Hard Disk Drive) and RAID(Redundant array of independent disks) due to the relatively slow or freezing characteristics of write operations of SSDs, as compared to fast read operations. In order to achieve this goal, we propose a new storage management scheme called Hetero-Mirroring based on traditional HDD mirroring scheme. Hetero-Mirroring-based scheme improves RAID-1 operation performance by balancing write-workloads and delaying write operations to avoid SSD freezing. Our test results show that our scheme significantly reduces the write operation overheads and freezing overheads, and improves the performance of traditional SSD-RAID-1 scheme by 18 percent, and the response time of the scheme by 38 percent.

A Transaction Level Simulator for Performance Analysis of Solid-State Disk (SSD) in PC Environment (PC향 SSD의 성능 분석을 위한 트랜잭션 수준 시뮬레이터)

  • Kim, Dong;Bang, Kwan-Hu;Ha, Seung-Hwan;Chung, Sung-Woo;Chung, Eui-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.57-64
    • /
    • 2008
  • In this paper, we propose a system-level simulator for the performance analysis of a Solid-State Disk (SSD) in PC environment by using TLM (Transaction Level Modeling) method. Our method provides quantitative analysis for a variety of architectural choices of PC system as well as SSD. Also, it drastically reduces the analysis time compared to the conventional RTL (Register Transfer Level) modeling method. To show the effectiveness of the proposed simulator, we performed several explorations of PC architecture as well as SSD. More specifically, we measured the performance impact of the hit rate of a cache buffer which temporarily stores the data from PC. Also, we analyzed the performance variation of SSD for various NAND Flash memories which show different response time with our simulator. These experimental results show that our simulator can be effectively utilized for the architecture exploration of SSD as well as PC.