• 제목/요약/키워드: Flash Boiling

검색결과 38건 처리시간 0.024초

전기 이중층 커패시터 적용을 목적으로 한 공용매상 전해액과 전기화학적 특성 (Enhance Potential Stability of Organic Electrolyte in EDLC by Using Co-solvent and Its electrochemical properties.)

  • 이현석;육영재;김한주;박수길
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.164-164
    • /
    • 2014
  • Characteristics of electrolyte are those; electrical stability, ion conductivity, viscosity, high temperature work, cell application. Theoretically, GBL has high oxidation voltage. Also, boiling point of GBL is $206^{\circ}C$ and flash point is over $280^{\circ}C$.

  • PDF

알코올류 등의 액체 혼합물에 대한 인화 및 연소 위험성에 관한 연구 (Study on the Risk of Flammability & Combustion of Liquid Mixtures such as Alcohols)

  • 고재선
    • 한국재난정보학회 논문집
    • /
    • 제15권4호
    • /
    • pp.634-647
    • /
    • 2019
  • 연구목적: 현재 많은 화학물질들이 산업 및 실생활에서 사용하고 있고, 단일 물질의 상태로 사용하는 물질도 많으나, 대부분 혼합물의 형태로 사용되고 있고, 이러한 물질들의 위험성을 판단하는 기준이 필요한 실정이다. 연구방법: 따라서 본 연구에서는 기존의 "위험물안전관리법 위험물 판정 기준"에 대한 세부내용의 실효성확보 및 위험물 판정의 신뢰성 및 재현성 확보를 목적으로 인화성 혼합물에 대한 실험적연구를 통해서 혼합물에 대한 위험성 판단기준을 확인하고자 하였다. 연구결과: 실험결과를 살펴보면 먼저 알코올류 인화점의 경우 비가연성 액체인 물과 혼합되었을 때. 알콜 기준으로 60%를 전후로 비슷한 인화점 추이를 나타내었고, 또한 가연성-가연성 혼합물의 경우에 있어서는 두 물질의 인화점차이가 크지 않으면 인화점의 변화가 거의 없었고, 두 물질의 인화점차이가 낮으면 인화점이 높은 물질의 증가에 따라 인화점이 증가하는 경향을 보였다. 연구결과: 향후 본 실험결과는 소방현장에서 단속되는 인화성 액체 대한 실험적 판정 기준에 대한 참고적인 자료를 제공할 수 있을 것이다.

후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구 (Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon)

  • 이상용;송시홍;이상호
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.833-846
    • /
    • 1988
  • 본 연구에서는 후래시현상과 가열이 동시에 존재하면서 증발을 일으키는 수직 증발관내에서의 유동양식에 대해서, 우선 전기 프로우브를 이용하여 관내의 유동양식 에 따른 전기적 신호를 얻고, 시진실험 방법(photographic experimental method)을 통 하여 이를 확인한다. 또한, 전기 프로우브를 통하여 얻은 신호는 적절한 해석과정을 통해 수직 증발관내의 유동에 따른 기공률을 측정하는데 적용된다.

액적의 증발에 미치는 수증기 농도의 영향 (Effects of Water Vapor Concentration on a Droplet Evaporation)

  • 김용우;이명준;하종률;정성식
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1999
  • An experimental study has been conducted to clarify the effect of vapor on droplet evaporation. Droplets of water, ethanol, n-hexadecane and n-heptane were exposed in air stream. Temperature, pressure, and flow velocity in the ambient air are 470K, 1 atm, and 2m/s, respectively. Measurements are carried out for the wide range of water vapor concentration$(0%\sim40%)$. To obtain the time histories of droplet diameter, suspended droplet in hot and humid air stream was synchronized with a back flash light, and enlarged droplet images were taken on a CCD camera. With the vapor concentration increasing, the evaporation rate constant of water droplet decrease slightly and the droplet of ethanol and n-heptane increase actively. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

Spray Characteristics of Dimethyl Ether(DME) Fuel Compared to Various Diesel Fuels

  • Lee, Seang-Wock;Kim, Duk-Sang;Cho, Yong-Seok
    • 한국분무공학회지
    • /
    • 제13권2호
    • /
    • pp.65-72
    • /
    • 2008
  • It is recognized that alternative fuel such as dimethyl ether (DME) has better combustion polluting characteristics than diesel fuel, even though the cetane number of DME is almost the same as that of diesel. Characteristics of DME spray were observed experimentally under various ambient conditions using a constant volume chamber and a common-rail injection system. N-dodecane and LPG fuel sprays were also observed under same conditions of DME spray. Using spray images from backlight scattering and Mie scattering, characteristics of fuel sprays such as penetration and spray volume were visualized and quantitatively measured. The measurements showed that the penetration of early period decreased remarkably, because evaporation of alternative fuels became prosperous by the influence of flash boiling phenomenon under the condition of the low temperature and pressure compared with n-dodecane. The penetration of DME and LPG spray received the influence of temperature more largely in comparison with low density, because the specific surface area increased by atomizing in high density.

  • PDF

대류유동으로 수직 분사된 과열 와류분무의 분무특성 (Spray Characteristics of Superheated Swirl Spray Vertically Introduced into Convective Cross-flow)

  • 이해천;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.395-398
    • /
    • 2010
  • 감압비등에 의한 미립화는 더 미세한 직경의 액적을 얻을 수 있고, 분무각이 증가하며, 더 좋은 혼합특성을 갖는 다는 점에서 단순 압력식 미립화와 차이가 난다. 감압비등이란 과열된 액체를 포화 압력 이하의 대기 중으로 분사하여 급격한 비등에 의해 이루어지는 미립화이다. 본 연구는 금속 연료를 이용한 추진기관의 산화제인 물 공급기술에 감압비등과정을 이용한 와류분무를 적용시키기 위해 수행됐다. 분열길이와 같은 거시적 특성은 Charge-Couple Device(CCD) 카메라를 이용해 측정하였고, Sauter Mean Diameter(SMD)와 SMD분포와 같은 미시적 특성은 Global Sizing Velocimetry(GSV) 시스템을 이용해 측정했다. 실험은 압력과 온도, 대류 속도를 변화시키며 진행했다.

  • PDF

분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성 (LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection)

  • 정진영;오희창;배충식
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

EFFECTS OF WATERY VAPOR CONCENTRATION ON DROPLET EVAPORATION IN HOT ENVIRONMENT

  • Lee, M.J.;Kim, Y.W.;Ha, J.Y.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.109-115
    • /
    • 2001
  • A study has been conducted to clarify the effect of watery vapor concentration in hot ambient on droplet evaporation. Droplets of water, ethanol, n-hexadecaneand n-heptane were used in this experimental study. Ambient conditions are fixed at 470 K in temperature, 0.1 MPa in pressure and 2 m/s in velocity of ambient air. Watery vapor concentration was changed 0%~40% by 10% by add water to air. To obtain the time histories of droplet diameter after exposed in ambient, a suspended droplet in hot and humid ambient stream was synchronized with a back flash light, and enlarged droplet images were taken by a CCD camera. The evaporation rate constant of water droplet decreases slightly with the vapor concentration because diffusion velocity reduction of droplet vapor occurs on the surface. The values of ethanol and n-heptane droplet actively increase by effect that water from condensation of vapor flows into the droplet. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

폐윤활유 불법혼입 C중유 물성 분석 (Analysis of Illegally Mixed Used Lube Oil in Bunker C)

  • 임영관;이재민;김완식;이정민
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.191-196
    • /
    • 2018
  • Bunker C is used in heavy-lift ships, furnaces, and boilers for generating heat, and power. Bunker C has only four regulations for quality standards and is rarely inspected in Korea. For these reasons, other oils such as used lubricant oil are commonly blended with Bunker C. This illegal mixture of fuel can damage the boilers, engines and affect the environment adversely. In this study, we investigate the fuel properties and perform atomic analysis of illegal Bunker C blended with used lube oil. The test results show that higher quantities of used lube oil in Bunker C have higher flash points, total acid numbers, copper corruption, solid contamination, and metal components. Further, increasing quantities of used lube oil in Bunker C cause lower viscosity, sulfur, and V content. However, adequate sample (approximately 1 L) is needed to evaluate presence of adulterants in Bunker C, we attempted the SIMDIST analysis. In the SIMDIST chromatogram, the used engine oils are detected for longer retention times than Bunker C owing to the high boiling point. We also quantitatively analyzed the lube oil content using SIMDIST.

분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교 (Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System)

  • 박준규;박성욱
    • 한국분무공학회지
    • /
    • 제28권1호
    • /
    • pp.32-42
    • /
    • 2023
  • In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.