• Title/Summary/Keyword: Flange Force

Search Result 156, Processing Time 0.023 seconds

A Comparative Study on Design by Actual Stress and Design by Member Strength in Bolt Connections (철골볼트 접합부 존재응력설계와 부재내력설계의 비교 연구)

  • 이만승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.94-101
    • /
    • 1999
  • There are two methods commonly used in design of splice plate connection of frame structure. The one is Design by Actual Stress which can sufficiently transfer actual force to an adjacent member using rows of bolts. The other is Design by Member Strength which is able to transfer total allowable stress of effective section area to a connected member. In real design, as a matter of convenience, Standard Connection Drawings have used according to Design by Member Strength. But this method underestimate connection force in shear connection where large connection moment occured. In this study, these Design methods are compared by connection moment in shear connections. and the adequate use of them are recommended. Also In order to evaluate more accurately the actual stress of splice plate of flange on moment. connection, a new calculation method of it is recommended.

  • PDF

Influence of Blankholding Force and Blank Diameter on the Drawability and Quality of Very Small Cylindrical Cups (극소형 원통컵의 드로잉성과 품질에 미치는 블랭크 홀딩력과 블랭크 직경의 영향)

  • Lee, K.S.;Kim, J.B.;Jung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.489-494
    • /
    • 2014
  • Micro forming is an appropriate process to manufacture very small metal parts which can be employed in the field of electronic devices or electrically controlled mechanical systems. The purpose of the current study was to investigate the influences of both blankholding force and blank diameter for the deep drawing of very small cups. It is essential to control the blankholding force because improper force can result in defects such as wrinkles in the flange or cracks in the corner of the drawn cups. In the current study blankholding force was controlled by springs connected to the blankholder of a press die. Exchangeable bushing dies with various die-corner radii were also used. To obtain the limit drawing ratio for each working condition several sizes of circular specimens were prepared using blanking tools. Beryllium copper(C1720) alloy sheet of $50{\mu}m$ thickness was chosen for the experiments. The maximum limit drawing ratio of 2.1 was achieved experimentally for the conditions of the blankholder force(BHF)=5.3kgf and Rd=0.3mm. Both thickness and hardness along the central section of drawn cups were measured and compared for different drawing conditions. It was found that the deviation of measured data in the thickness and hardness distribution increases with increasing blankholder force and blank diameter.

The Influence of Unbonded Prestressing Force on the Lateral Torsional Stability of Girders (비부착 긴장력이 거더의 횡비틀림 안정성에 미치는 영향)

  • Lee, Jong-Han;Lee, Kun-Joon;Kighuta, Kabuyaya
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • An experiment was carried out to evaluate the lateral torsional stability of a girder with respect to the location and magnitude of prestressing force. The test of evaluating the lateral displacement and stability of a girder could cause an unexpected result due to various parameters, such as material nonlinearity, initial geometric imperfections, prestressing force, and loading and support conditions. Therefore, a small model testing was programmed to control the various parameters and assess the lateral torsional stability with respect to the prestressing force. This study proposed and fabricated an experimental apparatus that can satisfy the loading and in-plane and out-of-plane support conditions and also contol the prestressing force. The result of the experiment showed that the lateral torsional stability increased when the prestressing force was applied in the bottom flange of the girder. As a result, this study proposed an analytical equation that can account for the effect of the prestressing force in the lateral torsional stability of a girder.

Energy Dissipation Capacity of the T-stub Fastened by SMA bars (SMA 강봉으로 체결된 T-stub의 에너지소산능력)

  • Yang, Jae Guen;Baek, Min Chang;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.231-240
    • /
    • 2014
  • The T-stub subjected to an axial tensile force shows various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of the T-stub, and the material properties of the T-stub and fastener. Due to the influence of these changes, the T-stub shows three failure modes: plastic failure after the flexural yielding of the T-stub flange, flexural yielding of the T-stub fillet, and fracture of the fastener. In general, a T-stub with a thin flange and where the gauge distance of the fastener is long has a larger energy dissipation capacity than a T-stub with a thick flange and where the gauge distance of the fastener is short, due to the plastic deformation after flexural yielding. In this study, three-dimensional nonlinear finite element analysis was carried out to determine the effect of the fastener used for fastening the T-stub on the energy dissipation capacity of the T-stub. For the fastener of the T-stub analysis model, F10T-M20 high-tension bolts and ${\varnothing}19.05-mm$ (3/4-inch) SMA bars were modeled, and the geometric shape of the T-stub was selected to represent the flexural yielding of the T-stub fillet and the axial tensile failure of the fastener.

Effects of Flange Joint on the Dynamic Characteristics of the External Cylindrical Grinding Wheel Spindle (외경연삭 휠 주축의 진동특성에 미치는 플랜지 결합부의 영향)

  • Kim, Sun-Min;Ha, Jae-Hoon;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.118-125
    • /
    • 1999
  • In the grinding process, generally, the exciting forces with high frequency can be generated due to the wheel wear and the grinding process. As the grinding speed increases, the precise investigation about the wheel dynamic characteristics is required. Conventionally the wheel-spindle has been considered with lumped model in dynamic modeling. With this lumped model, the significant mode resulted from the shell mode of wheel can be readily ignored. This paper suggests the new analysis model which includes the shell mode of wheel in modeling the wheel-spindle assembly. Furthermore, based on the suggested model, the effects of the bolt tightening force and the taper tightening force on the dynamic properties are investigated by the finite element modal analysis and the experimental method. As a result of investigation, the shell mode vibration of wheel affects the dynamic characteristics of the spindle assembly. Also, the vibration modes of the spindle assembly are significantly affected by the joint tightening forces.

  • PDF

Optimal Arrangement of Current Leads for 24kV class SFCL to Minimize Electromagnetic Force (전자기력을 고려한 24kV급 초전도 한류기용 전류리드의 최적화 배열방안)

  • Kim, J.H.;Song, J.B.;Hwang, S.J.;Kim, K.L.;Kim, H.M.;Kim, H.R.;Hyun, O.B.;Ko, T.K.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.62-66
    • /
    • 2007
  • Electromagnetic forces (Attractive and repulsive force), interacting between current leads show different tendency according to the arrangement of current leads on the top flange of the cryostat and the distance of each lead. Especially in case of high-current electric power devices or high-field magnets, optimal arrangement of current leads becomes one of the safety issues to be considered for minimizing the electromagnetic for ce acting on them. In this paper, we suggest an optimal arrangement method with three pairs of current leads for a 24kV class 650A superconducting fault current limiter (SFCL) system which has a probability of unpredicted fault currents(i.e, 20kA).

Resistance of Web-Separated Diagrid Nodes Subjected to Cyclic Loading (반복하중에 대한 웨브전이형 다이아그리드 노드의 구조적 특성)

  • Kim, Young Ju;Jung, In Yong;Ju, Young K.;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.257-266
    • /
    • 2009
  • The results of the analysis of the structural behavior of diagrid nodes that were subjected to cyclic loads such as wind and earthquakes was not fully understood due to difficulties in considering the welding type. In this study, diagrid nodes were tested to determine their behavior when they are subjected to seismic or wind loads. Five specimens were designed and fabricated. The corresponding test parameters were the welding type for each point and the length of the overlap of the side stiffener and the brace web. Tensile force was applied to one diagrid brace member, and compression force was applied to the other diagrid brace member. Cyclic loading was applied until the failure. The test showed that failures are due to axial stress from axial force and the additional bending moment of the two combined axial forces that have different directions. Tensile failure was observed from the tensile force, and local buckling was observed from the compressive force at the flange of the brace member. In addition, the welding type and the length overlap affected the initial stiffness, the yielding stress, and the energy absorption of the diagrid node.

An Experimental Study on the Fatigue Behavior of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 피로거동에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.459-465
    • /
    • 2016
  • In this paper, it was performed the fatigue test to examine the effect of cyclic loading for the simple T-joint. Axial force of bolt by clamping and the change of the force by applied load were measured in the joint. And the bolt force, the failure mode and the fatigue strength under cyclic loading were investigated. The parameters of the tension joint were set to be the flange thickness and the diameter of bolt to a different stiffness of the joint in response to the combination. From the fatigue test, failure mode of tensile joints under cyclic loading could be evaluated using a static ultimate load of the specific failure mode in EC3. The fatigue strength of the tension joints was considerably higher than the fatigue strength of the EC3(36) that does not consider a lever action. However, the additional axial force by lever action occurs to an increase in the axial force of the bolt it requires a careful evaluation of the fatigue strength.

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

Investigation and Analysis of the Occurrence of Rail Head Checks

  • Jin, Ying;Aoki, Fusayoshi;Ishida, Makoto;Namura, Akira
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.43-49
    • /
    • 2009
  • Wear and rolling contact fatigue (RCF) defects are most important causes of rail damage, and often interaction competitive at present railway track. Head check is one of rolling contact fatigue (RCF) defects, and generally occurs in mild circular curves and transition curves that are set at both ends of sharp circular curves. Wear tends to limit the crack growth of head checks by removing the material from the RCF surface. In order to clarify the conditions of the occurrence and growth of head checks, the authors measured the interacting forces between wheels and rails and the angle of attack of wheelset, and carried out contact analyses using the actual profile data of wheels and rails. The effects of the lateral force, the contact geometry, and the wear rate at rail gauge comer on the formation of head checks were also analyzed by using the worn profiles of actual wheels and rails and the data obtained by a track inspection car. Some specific range of wear rate at the gauge comer was identified as having close relation with occurrence of head checks.

  • PDF