• Title/Summary/Keyword: Flammable material

Search Result 98, Processing Time 0.03 seconds

Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sungjin;Song, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.181-185
    • /
    • 2005
  • The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

A Numerical Study On Various Energy and Environmental Systems (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구)

  • Jang D.S.;Song W.Y.;Na H.R.;Park B.S.;Lee E.J.;Kim B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.160-168
    • /
    • 1995
  • This paper describes computational efforts on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, aerator-induced flow in a lake for DO(dissolved oxygen) concentration, primary clarifier for water and waste water treatment, hood ventilation in workplace, cyclone and LNG combustors and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or the RNG $k-{\varepsilon}$ models. Turbulent reaction is modeled using two fast chemistry methods such as eddy breakup and conserved scalar models. Further, a nonequilibrium model is developed for the application of the chlorination process in the Dow reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal condition of various engineering system of interest.

  • PDF

A Numerical Study On Various Energy and Environmental Systems(Ⅰ) : LPG dispersion, Lake flow, Primary clarifier, Hood ventilation, Cyclone combustor, Dow chlorination reactor. (에너지$\cdot$환경 제반 시스템에 관한 수치 해석적 연구 (Ⅰ) : LPG 확산, 호소 유동, 일차침전조, 국소 환기용 후두, 싸이클론 연소로, Dow 화학 반응로)

  • Jang Dong-Sun;Kim Gyeong-Mi;Lee Eun-Ju;Park Byeong-Su;Kim Bok-Sun
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.93-108
    • /
    • 1997
  • This paper describes several computational results on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, buoyancy-driven flow in a lake, primary clarifier for water and waste water treatment, hood ventilation in workplace. cyclone combustor and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or RNG κ-ε models. A nonequilibrium turbulent reaction model is developed for the application of the chlorination process in the Dow thermal reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal operating condition of various environmental engineering system of interest.

  • PDF

The Study of the Compatibility of MSDS for the Classification of Flammable Materials (위험물의 분류를 위한 MSDS 이용의 적정성 연구)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.56-60
    • /
    • 2007
  • The usage of MSDS (Material Safety Data Sheet) is increased world widely for the implementation of GHS and REACH. In order to know the accuracy of the data in MSDS the flash point of n-Decanol was measured by using a Tag closed tester, a Seta-flash closed tester, a Pensky-Martens closed tester and a Cleveland open tester in Japan and Korea, respectively. The test results of flash points of n-Decanol purchased different manufacturer were compared to the data of the references and MSDS. The flash points determined in Japan were similar to those in Korea but have shown much difference from those in MSDS and literatures. It is suggested that the results of flash points determined in this research have validity and manufacturers should be more careful when they make MSDS as well as for the classification of GHS and REACH.

Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering (LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구)

  • Yoon, Jin Ho;Park, Ju Yeon;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

Synthesis of Boron Nitride Nanotubes via inductively Coupled thermal Plasma process Catalyzed by Solid-state ammonium Chloride

  • Chang, Mi Se;Nam, Young Gyun;Yang, Sangsun;Kim, Kyung Tae;Yu, Ji Hun;Kim, Yong-Jin;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2018
  • Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and high-efficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (${\sim}4000^{\circ}C$) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of $H_2$ gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride ($NH_4Cl$), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + $H_2$, successful fabrication of BNNTs synthesized from $h-BN+NH_4Cl$ is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from $h-BN+NH_4Cl$.

Examination on the Mounting Status of Cigar Lighter Receptacle for Vehicles and Analysis of its Tracking Characteristics (차량용 시가 잭의 장착 실태조사 및 트레킹 특성 분석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • This study examined the mounting status of cigar lighter receptacles for vehicles and analyzed the tracking phenomenon that occurs when foreign material entered a cigar lighter receptacle to obtain data for the analysis of accident investigation. Regardless of the vehicle's output, cigar lighter receptacles are mounted in a vehicle horizontally, vertically, or at tilting or inclined angle. The tilting type cigar lighter receptacle is much easier to use but current leakage resulting from foreign materials (coffee, beverages, water, etc.) falling into the cigar lighter receptacle may cause a fire to start. This study used a vehicle battery (DC 12V) as a power supply for the tracking test and configured its circuit in the same way as that of an electrical device in a vehicle. The tracking phenomenon that occurred in the standby mode of the vehicle exhibited a fine flame and an irregular occurrence of smoke. While this tracking phenomenon was occurring, the leakage current and the reaching distance of the flame were measured to be approximately 930mA and $20{\sim}50cm$, respectively. It is thought that the resultant flame may ignite toluene, dust, cigarettes, etc. It was observed that as the tracking progressed, the internal metal socket melted and a hole was created, the surface of which was also severely carbonized. In addition, the electrical resistance of the carbonized conductive path was measured to be approximately $30{\Omega}$. It is thought that this much resistance may cause local heating when leakage current flows and could ignite any nearby flammable material.

Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant (단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션)

  • Seok, Jun;Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.