DOI QR코드

DOI QR Code

Synthesis of Boron Nitride Nanotubes via inductively Coupled thermal Plasma process Catalyzed by Solid-state ammonium Chloride

  • Chang, Mi Se (Metal Powder Department, Korea Institute of Materials Science) ;
  • Nam, Young Gyun (Metal Powder Department, Korea Institute of Materials Science) ;
  • Yang, Sangsun (Metal Powder Department, Korea Institute of Materials Science) ;
  • Kim, Kyung Tae (Metal Powder Department, Korea Institute of Materials Science) ;
  • Yu, Ji Hun (Metal Powder Department, Korea Institute of Materials Science) ;
  • Kim, Yong-Jin (Metal Powder Department, Korea Institute of Materials Science) ;
  • Jeong, Jae Won (Metal Powder Department, Korea Institute of Materials Science)
  • 투고 : 2018.04.09
  • 심사 : 2018.04.24
  • 발행 : 2018.04.28

초록

Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and high-efficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (${\sim}4000^{\circ}C$) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of $H_2$ gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride ($NH_4Cl$), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + $H_2$, successful fabrication of BNNTs synthesized from $h-BN+NH_4Cl$ is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from $h-BN+NH_4Cl$.

키워드

참고문헌

  1. C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, Deyu Li, A. Majumdar, and A. Zettl : Phys. Rev. Lett., 97 (2006) 085901. https://doi.org/10.1103/PhysRevLett.97.085901
  2. N. G. Chopra and A Zettl : Solid State Commun., 105 (1998) 297. https://doi.org/10.1016/S0038-1098(97)10125-9
  3. C. H. Lee, M. Xie, V. Kayastha, J. Wang and Y. K. Yap : Chem. Mater., 22 (2010) 1782. https://doi.org/10.1021/cm903287u
  4. O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff and W. E. Buhro : Chem. Mater., 12 (2000) 1808. https://doi.org/10.1021/cm000157q
  5. M.J Kim, S. Chatterjee, S. M. Kim, E. A. Stach, M. G. Bradley, M. J. Pender, L. G. Sneddon and B. Maruyama : Nano Lett., 8 (2008) 3298. https://doi.org/10.1021/nl8016835
  6. L. Lu Hua, C. Ying and M. G. Alexey. Nanotechnology. 21 (2010) 105601. https://doi.org/10.1088/0957-4484/21/10/105601
  7. A. Loiseau, F. Willaime, N. Demoncy, G. Hug and H. Pascard : Phys. Rev. Lett., 76 (1996) 4737. https://doi.org/10.1103/PhysRevLett.76.4737
  8. D. P. Yu, X. S. Sun, C. S. Lee, I. Bello, S. T. Lee, H. D. Gu, K. M. Leung, G. W. Zhou, Z. F. Dong, and Z. Zhang : Appl. Phys. Lett., 72 (1998) 1966. https://doi.org/10.1063/1.121236
  9. K. S. Kim, C. T. Kingston, A. Hrdina, M. B. Jakubinek, J. Guan, M. Plunkett, and B.Simard : ACS Nano. 8 (2014) 6211. https://doi.org/10.1021/nn501661p
  10. K. Keun Su, K. Myung Jong, P. Cheol, C. F. Catharine, C. Sang-Hyon and T. K. Christopher : Semicond. Sci. Technol., 32 (2017) 013003. https://doi.org/10.1088/0268-1242/32/1/013003
  11. Fact Sheet: Hydrogen Safety [Internet]. Office of Environment, Health & Safety. 2013.
  12. C. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Zhang, Y. Yap. Molecules. 21 (2016) 922. https://doi.org/10.3390/molecules21070922
  13. A. L. Tiano, C. Park, J. W. Lee, H. H. Luong, L. J. Gib- bons, S.-H. Chu, et al., editors. Boron nitride nanotube: synthesis and applications. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; 2014: SPIE.
  14. G. Ciofani, G. G. Genchi, I. Liakos, A. Athanassiou, D. Dinucci, F. Chiellini V.Mattoli : J. Colloid Interface Sci., 374 (2012) 308. https://doi.org/10.1016/j.jcis.2012.01.049
  15. B Todorovic-Markovic, Z Markovic, I Mohai, Z Nikolic, Z Farkas, J Szepvolgyi, E Kovats, P Scheier and S Feil : J. Phys. D. 39 (2006) 320. https://doi.org/10.1088/0022-3727/39/2/012
  16. C. Zhi, Y. Bando, C. Tang and D. Golberg : Mater. Sci. Eng. R Rep., 70 (2010) 92. https://doi.org/10.1016/j.mser.2010.06.004
  17. T. H. Ferreira, D. C. F. Soares, L. M. C. Moreira, P. R. O. da Silva, R. G. dos Santos and E.M.B. de Sousa : Mater. Sci. Eng., C. 33 (2013) 4616. https://doi.org/10.1016/j.msec.2013.07.024
  18. J. Hannauer, U. B. Demirci, C. Geantet, J. M. Herrmann, and P.Miele : Phys. Chem. Chem. Phys., 13 (2011) 3809. https://doi.org/10.1039/c0cp02090g
  19. Boron Specialties. Available from: http://www.boron.com/ammonia_borane.html.
  20. J. Yu, Y. Chen and B.M.Cheng : Solid State Commun., 149 (2009) 763. https://doi.org/10.1016/j.ssc.2009.03.001