• 제목/요약/키워드: Flammable material

검색결과 98건 처리시간 0.029초

A Study on the Strength Variation According to the Air Pressure Using the Independent Bubble Type Foaming Agent (독립기포형태 기포제를 활용한 기압에 따른 강도 변화에 대한 논문)

  • You, Nam Gyu;Hong, Sang Hun;Seo, Eun-Seok;Kim, Han-Nah;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.19-20
    • /
    • 2018
  • As energy related problems continue to arise, Korea's thermal insulation market for the zero energy homes is also demanding major changes, but there are no realistic countermeasures. Also, interest in inorganic insulation is growing as damage from multifamily housing fire using flammable insulation materials is increasing. On the other hand, many studies have been conducted on lightweight foam concrete, which implies a sufficient possibility as an insulation material by generating a large amount of air bubbles. However, studies of existion bubble concrete are not quantified by the experimental difficulty of using bubbles when compared. Therefore, in this study, the change in strength due to air pressure using a bubble foam, one of the types of air bubbles for the development of light foam concrete.

  • PDF

Experimental Procedure for Design Allowances of Mechanical Joint in Non-flammable Composites (불연성 복합재의 기계적 접합부 설계 허용치 도출을 위한 실험적 절차)

  • Lee Chang-Hun;Kim Jin-Bong;Park Ji-Sang;Hwang Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.258-261
    • /
    • 2004
  • This paper contains the tension-tension, the tension-tension bearing and the tension-tension steel bolt joint fatigue characteristics of glass fabric/phenol composite laminates. The experimental results show that the bearing and the steel bolt joint fatigue characteristics of the material is so excellent compared with the simple tension fatigue characteristics, that there are no needs of additional strengthening for mechanical joint parts when the parts are properly designed.

  • PDF

Development of Non-flammable exterior design Molding using Cellular Light-weight Concrete (CLC를 활용한 공동주택 불연성능 외벽몰딩 개발)

  • Kwon, Hae-Won;Gong, Min-Ho;Lee, Chang-Yong;Jeong, Gab-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.54-55
    • /
    • 2020
  • Recently, "The rules on the standards of evacuation and fire protection of buildings" require that non-burnable materials such as non-combustible and semi-non-combustible materials be used as the materials applied to the building's exterior walls, but styrofoam, which is a combustible material, has been applied a lot and became a social issue. In this study, we developed a non-combustible outer wall molding to secure construction and economic feasibility and free expression using CLC(CLC: Cellular Light-weight Concrete).

  • PDF

Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture (n-Decane과 sec-Butanol 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • 제26권3호
    • /
    • pp.85-90
    • /
    • 2012
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-Decane+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Decane and sec-Butanol which constituted binary system were $212^{\circ}C$ and $447^{\circ}C$, respectively. The experimental AITs of n-Decane+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Measurement and Prediction of Combustion Properties of n-Phenol (페놀의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Journal of Hazardous Materials
    • /
    • 제6권2호
    • /
    • pp.23-29
    • /
    • 2018
  • The fire and explosion properties necessary for waste, safe storage, transport, process design and operation of handling flammable substances are lower explosion limits(LEL), upper explosion limits(UEL), flash point, AIT( minimum autoignition temperature or spontaneous ignition temperature), fire point etc., An accurate knowledge of the combustion properties is important in developing appropriate prevention and control measures fire and explosion protection in chemical plants. In order to know the accuracy of data in MSDSs(material safety data sheets), the flash point of phenol was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of phenol was measured by ASTM 659E apparatus. The explosion limits of phenol was investigated in the reference data. The flash point of phenol by using Setaflash and Pensky-Martens closed-cup testers were experimented at $75^{\circ}C$ and $81^{\circ}C$, respectively. The flash points of phenol by Tag and Cleveland open cup testers were experimented at $82^{\circ}C$ and $89^{\circ}C$, respectively. The AIT of phenol was experimented at $589^{\circ}C$. The LEL and UEL calculated by using Setaflash lower and upper flash point value were calculated as 1.36vol% and 8.67vol%, respectively. By using the relationship between the spontaneous ignition temperature and the ignition delay time proposed, it is possible to predict the ignition delay time at different temperatures in the handling process of phenol.

Experimental Study on Ignition and Explosion Hazard by Measuring the Amount of Non-volatile (NVR) and Explosion Limit of Biodiesel Mixture (바이오디젤 혼합물의 가열잔분측정과 폭발한계 측정을 통한 발화 및 폭발위험성에 대한 실험적인 연구)

  • Kim, Ju Suk;Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • 제18권1호
    • /
    • pp.182-193
    • /
    • 2022
  • Purpose: By measuring and evaluating the risk of biodiesel through non-volatile residue (NVR) and flash point and explosion limit measurement at a specific temperature according to ASTM test standards, the risk of chemical fire causative substances is identified and a universal evaluation method By derivation and securing the risk-related data of the material, it can be used for the identification and analysis of the cause of the fire, and it can be applied to the risk assessment of other chemical substances Method: In order to measure the risk of biodiesel, it was measured using the non-volatile residue(NVR) measurement method, which measures how much flammable liquid is generated at a specific temperature. Heating was tested by applying KS M 5000: 2009 Test Method 4111. In addition, the flash point was measured using the method specified in ASTM E659-782005, and the energy supply method was measured using the constant temperature method. In addition, the explosion limit measurement was conducted in accordance with ASTM E 681-04 「Standard test method for concentration limits of flammability of chemicals(Vapors and gases)」 test standard. Result: As a result of checking the amount of combustible liquid by the non-volatile residue (NVR)measurement method, the non-volatile residue(NVR) of general diesel when left at 105±2℃ for 3 hours was about 30% (70% of volatile matter) and about 4% of biodiesel. In addition, similar results were obtained for the non-volatile residue(NVR)heating temperature of 150±2℃, 3 hours and 200±2℃ for 1 hour, and white smoke was generated at 200℃ or higher. In addition, similar values were obtained as a result of experimentally checking the explosion (combustion) limits of general diesel, general diesel containing 20% biodiesel, and 100% biodiesel. Therefore, it was confirmed that the flammability risk did not significantly affect the explosion risk. Conclusion: The results of this study suggested the risk judgment criteria for mixtures through experimental research on flammable mixtures for the purpose of securing the effectiveness, reliability, and reproducibility of the details of the criteria for determining dangerous substances in the existing Dangerous Materials Safety Management Act. It will be possible to provide reference data for the judgment criteria for flammable liquids that are regulated in the field. In addition, if the know-how for each test method is accumulated through this study, it is expected that it will be used as basic data in the research on risk assessment of dangerous substances and as a basis for research on the determination of dangerous substances.

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • 제30권3호
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • 제33권4호
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

A Characteristic Study of Inorganic Insulation Using Balloon Pearlite (발룬 펄라이트를 사용한 무기단열재의 특성 연구)

  • Jeon, Chanki;Park, Jongpil;Chung, Hoon;Lee, Jaeseong;Shim, jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • 제12권3호
    • /
    • pp.292-299
    • /
    • 2016
  • The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulations material which are made of styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral-wool and glass-wool are very week with moisture while they are non-flammable so that its usage is very limited. In this study, inorganic heat insulating material developed and the properties of thermal conductivity evaluated. The thermal conductivity and the water absorption of the sample in less than 50mm thickness of the board is less than 0.05W/mk, 3.0%. Bending strength and the water repellency is more than $25N/cm^2$, 98%.

A Study on the Fluid H in Automotive Air Conditioning System as an Alternative Refrigerant (자동차 공조용 대체 냉매로서의 H냉매에 대한 연구)

  • Choi, Jeong-Won;Nam, Soo-Byeong;Bang, Scott
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제15권6호
    • /
    • pp.170-176
    • /
    • 2007
  • It is time to prepare the phaseout of R134a, the current refrigerant, in automotive air conditioning system because the EC deadline has been coming with new platform vehicles in 2011 and all vehicles by 2017. Until now a high-pressure carbon dioxide($CO_2$) system is the leading replacement of R134a in European auto-makers but there is no firm agreement in the world automotive market. Recently three new fluids have been announced as the possibilities from Honeywell, DuPont and INEOS Fluor. The new alternative refrigerant should meet the requirements like non flammable, non toxic, no ozone depletion effect and low GWP(under 150 to meet EC regulation). The objectives of this paper are to review the fluid H from Honeywell, the more possible alternative refrigerant in 3 new fluids, compare the properties of R134a & fluid H and see the possibility as a replacement of R134a. In this experimental paper we ran and reviewed the cooling performance data in the bench system, the vehicle and the field test. We found the possibility of fluid H system to meet the R134a system performance with some hardware modifications but agreed that it is still needed to study about the long term safety, environmental effects, material compatibilities and so on.