• Title/Summary/Keyword: Flammable

Search Result 505, Processing Time 0.021 seconds

Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis (다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측)

  • Lee, Bom-Sock;Kim, S.Y.;Chung, C.B.;Choi, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.29-33
    • /
    • 2006
  • Estimation of process safety is important in the chemical process design. Prediction for flash points of flammable substances used in chemical processes is the one of the methods for estimating process safety. Flash point is the property used to examine the potential for the fire and explosion hazards of flammable substances. In this paper, multivariate statistical analysis methods(partial least squares(PLS) quadratic partial least squares(QPLS)) using experimental data is suggested for predicting flash points of flammable substances of binary systems. The prediction results are compared with the values calculated by laws of Raoult and Van Laar equation.

  • PDF

An Experimental Study on Minimum Ignition Energy of Flammable Mixtures by Electric Power Frequency (전원주파수의 변화에 따른 인화성 혼합기체의 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.26-32
    • /
    • 2012
  • With a progress of electrical and electronic technology, radio-frequency including high frequency components are widely to various industrial installations. Some of them are used in hazardous locations where explosive or flammable gases exist. As a result, ignition of such gases may be induced by a spark discharge when the radio frequency circuits are switched on or off. The purpose of this study is to investigate the ignition hazards of some kind of flammable mixtures based on the IEC 60079-11 publication. In this experiment, we used a high frequency resistive circuit which consists of a co-axial cable, a 20 ${\Omega}$, 30 ${\Omega}$, 40 ${\Omega}$ and 50 ${\Omega}$ resistor and two kind of power amplifier with frequency range up to almost 1 MHz and 50 MHz. Experimental results show that the ignition of the acetyleneair, ethylene-air mixtures and methane-air mixtures due to spark discharge depends primarily on the frequency of the power source in the resistive circuit the minimum ignition voltage increases gradually with the increase of the frequency.

Validity Review on Classification of Explosion Hazardous Area using Hypothetic Volume (가상체적을 이용한 폭발위험장소 구분의 타당성 검토)

  • Yim, Ji-Pyo;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.68-75
    • /
    • 2014
  • It is very important to classify explosion hazardous area (EHA) suitably and to use proper explosion-proof electric installations for facilities using flammable gases and liquids. In the past, various examples in the Notification of Ministry of Employment and Labor were referred to in classifying EHA. But, at present, many companies use the hypothetical volume in Korean Standards (KS). This study reviews the validity of EHA classification based on the hypothetical volume by comparing the calculated radii of EHA with those obtained by a consequence analysis program called PHAST and a mathematical approach in British Standards (BS). The radii of EHA by the hypothetical volume were found to be slightly larger than those by the other two methods. This was attributed to rather conservative uses of a safety factor(k) and a correction factor(f) for availability of ventilation in calculating the hypothetical volume. Since the differences are not so conspicuous, however, it is concluded that the hypothetical volume in KS is a valid means for the classification of EHA. This study also presents a table of the radii of EHA for easy reference by small-scale companies using city gas, C3-LPG and flammable liquid(toluene), respectively. The table consists of 25 leakage scenarios corresponding to combinations of 5 pipe(nozzle) sizes and 5 operating conditions for each flammable gas and liquid.

Experimental Determination of Closed Cup Flash Point of Binary Flammable Solutions, 2-Propanol+Propionic acid and n-Hexanol+Formic Acid Solutions (가연성 이성분계 용액인 2-Propanol+Propionic acid 와 n-Hexanol+Formic acid 용액의 밀폐식 인화점의 실험적 결정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.18-24
    • /
    • 2015
  • The flash point is one of the most important indicators of the flammabiliy of liquid solutions. The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. In this study the flash points of binary flammable solutions, 2-propanol+propionic acid and n-hexanol+formic acid systems, were measured using Seta flash closed cup tester. Particularly n-hexanol+formic acid system exhibited minimum flash point behavior. The measured values were compared with the calculated values using Raoult's law and optimization method. The calculated data by optimization method described the measured values more effectively than those calculated by Raoult's law.

Analysis of the Response Time of a Photoelectric Spot-Type Smoke Detector Depending on the Type of Fires (화원에 따른 광전식 연기감지기 반응시간 분석)

  • Jee, Seung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.89-94
    • /
    • 2013
  • The fire testing performed for smoke detector model approval in Korea tests only one kind of fire smoke. A photoelectric spot-type smoke detector using Mie scattering is affected by the wavelength of light beam and the particle diameter. According to UL (Underwriters Laboratories Inc.) 268 standard, this paper analyze the characteristic of the response for a photoelectric spot-type smoke detector on sale in Korea using various fire smokes. Probability that the response time is included in non-defective range is 100% in paper fire, 90% in wood fire and 75% in flammable liquid fire, 90% in wood fire and 75% in flammable liquid fire. According to the estimation for population mean of the response time choosing a confidence level of 99%, a maximum of 19% for wood fire and that of 38% for flammable liquid fire are defective. As the result of analysis of smoke particle, this paper is found that these results are caused by the smoke particles are wide variations in size or have very black.

Simulation of a Leakage Process of Refrigerant Mixtures (혼합냉매의 누출과정에 관한 시뮬레이션)

  • Kim, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.217-225
    • /
    • 1993
  • Nonflammable mixtures of flammable and nonflammable refrigerants are possible as substitute refrigerants for use in domestic heat pumps and refrigerators. Refrigerant leakage from such a system is of paramount concern since it is possible that the resulting mixture composition remaining in system will reside in the flammable range. This paper presents a simulation of a leakage process of refrigerant mixtures. Idealized cases of isothermal leakage process are considered in this study representing a slow leak. Simulation is performed for selected composition of binary and ternary refrigerant mixture; R-32/134a and R-32/125/134a. Mixture compositions with respect to percentage leak of original charge are presented. In isothermal leakage process, both vapor and liquid compositions of more volatile refrigerant decrease during vapor and liquid leak, but the total composition of this component decreases during vapor leak and increases during liquid leak. Vapor and liquid compositions are determined depending on the vapor-liquid equilibrium relation of the refrigerant mixture. The refrigerant mixture left in the system can go to a nonflammable direction relying on which component in the mixture is flammable.

  • PDF

A Study on the Response Characteristics of the Residential Smoke Detector Depending on Controlled Fire Tests (화재실험을 통한 주택용 연기감지기 응답특성에 관한 연구)

  • SaKong, Seong-Ho;Kim, Shi-Kuk;Lee, Chun-Ha;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.98-103
    • /
    • 2009
  • In this paper, in order to analyze the response characteristics of the smoke detectors which is suitable with the residential fire detector, the paper fire and flammable liquid fire experiment came to be accomplished according to UL Standard for safety for smoke detector for fire alarm signaling systems, UL 268. Also Photoelectric smoke detector, the Analog smoke detector and the single station alarm device came to be used with the specimen and the response characteristics of the smoke detectors which follows in these two types(paper, flammable liquid) test fire came to be analyzed. As a result, according to test fire there was some difference to response characteristics of the smoke detectors.

The Flash Point Measurement for Binary Flammable Mixture (이성분계 가연성 혼합물의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.60-65
    • /
    • 2014
  • The flash point is the major physical property used to characterize the fire hazard of flammable liquid solutions. In the present study, the main focus is on measuring and estimating the flash points for binary flammable mixture. The flash points for n-propanol+propionic acid were measured by Seta flash closed cup apparatus. The experimental data were correlated with the van Laar and NRTL equations through the optimization method. The results estimated by these correlations were compared with the values calculated by the method based on Raoult's law. The optimization method were found to be better than the method based on the Raoult's law.

An integrated method of flammable cloud size prediction for offshore platforms

  • Zhang, Bin;Zhang, Jinnan;Yu, Jiahang;Wang, Boqiao;Li, Zhuoran;Xia, Yuanchen;Chen, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.321-339
    • /
    • 2021
  • Response Surface Method (RSM) has been widely used for flammable cloud size prediction as it can reduce computational intensity for further Explosion Risk Analysis (ERA) especially during the early design phase of offshore platforms. However, RSM encounters the overfitting problem under very limited simulations. In order to overcome the disadvantage of RSM, Bayesian Regularization Artificial Neural (BRANN)-based model has been recently developed and its robustness and efficiency have been widely verified. However, for ERA during the early design phase, there seems to be room to further reduce the computational intensity while ensuring the model's acceptable accuracy. This study aims to develop an integrated method, namely the combination of Center Composite Design (CCD) method with Bayesian Regularization Artificial Neural Network (BRANN), for flammable cloud size prediction. A case study with constant and transient leakages is conducted to illustrate the feasibility and advantage of this hybrid method. Additionally, the performance of CCD-BRANN is compared with that of RSM. It is concluded that the newly developed hybrid method is more robust and computational efficient for ERAs during early design phase.

Design of Non-flammable Mixed Refrigerant Joule-Thomson Refrigerator for Semiconductor Etching Process (반도체 식각공정을 위한 비가연성 혼합냉매 줄톰슨 냉동기 설계)

  • Lee, Cheonkyu;Kim, Jin Man;Lee, Jung-Gil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.144-149
    • /
    • 2022
  • A cryogenic Mixed Refrigerant Joule-Thomson refrigeration cycle was designed to be applied to the semiconductor etching process with non-flammable constituents. 3-stage cascade refrigerator, single mixed refrigerant Joule-Thomson refrigerator, and 2-stage cascade type mixed refrigerant Joule-Thomson refrigerator are analyzed to figure out the coefficient of performance. Non-flammable mixture of argon(Ar), tetrafluoromethane(R14), trifluoromethane (R23) and octafluoropropane(R218) were utilized to analyze the refrigeration cycle efficiency. The designed refrigeration cycle was adapted to cool down the coolant of HFE7200(Ethoxy-nonafluorobutane, C4F9OC2H5) with certain constraints. Maximum coefficient of performance of the refrigeration system is obtained as 0.289 for the cooling temperature lower than -100℃. The detailed result of the coefficient of performance according to the mixture composition is discussed in this study.