• 제목/요약/키워드: Flammable

검색결과 509건 처리시간 0.023초

인화성 액체 도전율에 관한 측정 및 비교(IEC 60079-32-2) 연구 (A Study on the Measurement and Comparison(IEC 60079-32-2) of Flammable Liquid Conductivity)

  • 이동훈;변정환
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.22-31
    • /
    • 2019
  • The flammable liquid conductivity is an important factor in determining the generation of electrostatic in fire and explosion hazardous areas, so it is necessary to study the physical properties of flammable liquids. In particular, the relevant liquid conductivity in the process of handling flammable liquids in relation to the risk assessment and risk control in fire and explosion hazard areas, such as chemical plants, is classified as a main evaluation item according to the IEC standard, and it is necessary to have flammable liquid conductivity measuring devices and related data are required depending on the handling conditions of the material, such as temperature and mixing ratio for preventing the fire and explosion related to electrostatic. In addition, IEC 60079-32-2 [Explosive Atmospheres-Part 32-2 (Electrostatic hazards-Tests)] refers to the measuring device standard and the conductivity of a single substance. It was concluded that there is no measurement data according to the handling conditions such as mixing ratio of flammable liquid and temperature together with the use and measurement examples. We have developed the measurement reliability by improving the structure, material and measurement method of measuring device by referring to the IEC standard. We have developed a measurement device that is developed and manufactured by itself. The test results of flammable liquid conductivity measurement and the data of the NFPA 77 (Recommended Practice on Static Electricity) Annex B Table B.2 Static Electric Characteristic of Liquids were compared and verified by conducting the conductivity measurement of the flammable liquid handled in the fire and explosion hazardous place by using Measuring / Data Acquisition / Processing / PC Communication. It will contribute to the prevention of static electricity related disaster by taking preliminary measures for fire and explosion prevention by providing technical guidance for static electricity risk assessment and risk control through flammable liquid conductivity measurement experiment. In addition, based on the experimental results, it is possible to create a big data base by constructing electrostatic physical characteristic data of flammable liquids by process and material. Also, it is analyzed that it will contribute to the foundation composition for adding the specific information of conductivity of flammable liquid to the physical and chemical characteristics of MSDS.

API-581에 의한 위험기반 검사에서 가연성 물질의 사고결과 분석 (Consequence Analysis of flammable Materials at Risk Based Inspection using API-581)

  • 이헌창;유준;김환주;장서일;김태옥
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.60-68
    • /
    • 2004
  • Consequence analysis of flammable materials that affect to a risk of facilities was studied at the risk based inspection using API-581. We found that consequence areas (damage area of equipment and fatality area) by release accident of flammable materials showed high value for the case of liquid phase and auto-ignition likely, and that consequence areas of flammable gases decreased as temperature increased and the pipe diameter and pressure decreased at continuous release.

위험물질 분류 및 표지에 관한 세계조화시스템 고찰 (The Review of Globally Harmonized System of Classification and Labelling of Chemicals)

  • 권경옥
    • 한국화재소방학회논문지
    • /
    • 제21권3호
    • /
    • pp.84-90
    • /
    • 2007
  • UN에서는 위험물의 분류, 표지, 제조, 수송, 저장, 사용과 폐기에 관한 통합된 시스템(GHS, Globally Harmonized System of Classification and Labelling of Chemicals, 화학물질의 분류와 표지에 관한 세계조화시스템)을 구축하고 이 사항을 OECD에 가입한 모든 나라들에게 자국에 도입하여 실시하도록 권고하고 있다. GHS는 위험물분류와 운송부분에 관하여 물리 화학적 위험성과 급성독성의 분류와 표지사항을 기본으로 출발하였으므로 기존의 UN 시행방법과 큰 차이는 없다. 본 연구에서는 UN에서 권고하고 있는 GHS와 위험물안전관리법의 위험물분류와 위험물표지사항 및 위험물판정시험방법을 비교 검토하였다.

방화 범죄에서 가연성 물질과 연소촉진제의 연소 특성에 관한 연구 (Study on the Combustion Characteristics of Flammable materials and Combustion Accelerants in an Arson)

  • 박혜정;남기훈;김광일
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.7-11
    • /
    • 2017
  • 본 연구는 방화에 사용된 가연성 물질, 연소촉진제의 연소특성을 파악하여 방화에 사용 가능한 물질 관리의 필요성을 인지하고 방화를 예방하기 위한 연구이다. 방화에 대한 통계자료를 조사 및 분석하여 사용된 가연성 물질(목재, 종이, 합성섬유, 합성수지)과 연소촉진제(휘발유, 경유, 페인트 도료)를 선정하였다. 가연성 물질의 열적 특성을 파악하기 위해 열 중량 분석을 실시하였다. 또한, 가연성 물질과 연소촉진제의 연소특성을 비교 및 분석하기 위해 연소 화염전파속도 측정 실험을 실시하여 실험 결과를 도출하였다.

가연성 냉매의 외부 응축 열전달에 관한 연구 (A Study of External Condensation Heat Transfer of Flammable Refrigerants)

  • 배동수;하종철;유길상;정동수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.522-529
    • /
    • 2004
  • In this study, external condensation heat transfer coefficients (HTCs) of flammable refrigerants of propylene, propane, isobutane, butane, DME, and HFC32 were measured on a horizontal plain tube, 26 fpi low fin tube, and Turbo-C tube. All data were taken at the temperature of 39$^{\circ}C$ with a wall subcooling of 3∼8$^{\circ}C$. Test results showed a typical trend that condensation HTCs of flammable refrigerants decrease with increasing wall subcooling. HFC32 had the highest HTCs among the tested refrigerants showing 44% higher HTCs than those of HCFC22 while DME showed 28% higher HTCs than those of HCFC22. HTCs of propylene and butane were similar to those of HCFC22 while those of propane and isobutane were similar to those of HFC134a. Based upon the tested data, Nusselt's equation is modified to predict the plain tube data within a deviation of 3%. For 26 fpi low fin tube, Beatty and Katz equation predicted the data within a deviation of 7.3% for all flammable refrigerants tested. The heat transfer enhancement factors for the 26 fpi low fin and Turbo-C tubes were 4.6∼5.7 and 4.7∼6.9 respectively for the refrigerants tested indicating that the performance of Turbo-C tube is the best among the tubes tested.

Condensation Heat Transfer Coefficients of Flammable Refrigerants on Various Enhanced Tubes

  • Park Ki-Jung;Jung Dongsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1957-1963
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (RI270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of $39^{\circ}C$ on a 1023 fpm low fin and Turbo-C tubes. All data were taken under the heat flux of $32\~116\;and\;42\~142kW/m^2$ for the low fin and Turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to $30\%$ higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of $7.3\%$. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate.

사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 II: 인화성 물질을 중심으로 (Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment II: Flammable)

  • 조은혜;신도연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, formaldehyde and benzene were selected as the arbitrary chemicals in accidental leakage to environment, and their physicochemical and biological characteristics and toxicity were studied. Also, the fate of these chemicals in soil and groundwater was studied based on the results of previous studies. They can be released into the atmosphere as gas or vapor phase, which then can be photochemically degraded. Since they have relatively high water solubility, they are likely to have high mobility in water and soil. Volatilization of these chemicals from soil is affected by the soil moisture content. Biodegradation of formaldehyde and benzene is one of the important pathways as well. Therefore, it is necessary to study the environmental impacts of leakage accidents of flammable chemicals such as formaldehyde and benzene. Further research on the fate of flammable chemicals in the environment is needed to take appropriate response actions to leakage accidents of flammable chemicals, and this will contribute to the development of practical guidelines to cope with leakage accidents.

Simulation and assessment of gas dispersion above sea from a subsea release: A CFD-based approach

  • Li, Xinhong;Chen, Guoming;Zhang, Renren;Zhu, Hongwei;Xu, Changhang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.353-363
    • /
    • 2019
  • This paper presents a comprehensive simulation and assessment of gas dispersion above sea from a subsea release using a Computational Fluid Dynamics (CFD) approach. A 3D CFD model is established to evaluate the behavior of flammable gas above sea, and a jack-up drilling platform is included to illustrate the effect of flammable gas cloud on surface vessels. The simulations include a matrix of scenarios for different surface release rates, distances between surface gas pool and offshore platform, and wind speeds. Based on the established model, the development process of flammable gas cloud above sea is predicted, and the dangerous area generated on offshore platform is assessed. Additionally, the effect of some critical factors on flammable gas dispersion behavior is analyzed. The simulations produce some useful outputs including the detailed parameters of flammable gas cloud and the dangerous area on offshore platform, which are expected to give an educational reference for conducting a prior risk assessment and contingency planning.

수소 취급설비의 누출원에 인접한 방폭전기기기의 가스그룹 IIC 기기 회피 방안에 관한 연구 (A Study on the Method to Avoid the Gas Group IIC Equipment of Explosion Proof Electrical Equipment Adjacent to the Source of Release of Hydrogen Handling Facility)

  • 변윤섭
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.383-390
    • /
    • 2022
  • Appropriate explosion proof electrical equipment should be installed in hazardous areas. In areas where hydrogen is handled, explosion proof electrical equipment adjacent to the hydrogen handing facility must be reviewed for selection of gas group IIC (or IIB+H2) equipment. When selecting explosion proof electrical equipment for the flammable substance handling facility in areas where hydrogen and flammable substance are handled, the method to avoid gas group IIC (or IIB+H2) equipment has been suggested by using the operating pressure of the hydrogen handling facility. When the operating pressure of the outdoor hydrogen handling facility is 1.065 MPa or less, it has been confirmed that there is no need to install gas group IIC (or IIB+H2) equipment for the flammable substance handling facility adjacent to the hydrogen handling facility. And the method of selecting explosion proof electrical equipment for the flammable substance handling facility has been suggested as a flowchart, so it will be able to be utilized when selecting appropriate explosion proof electrical equipment.

광 방사로부터 점화 위험성 (Ignition Hazard of Flammable Atmospheres by Optical Radiation)

  • 최상원
    • 한국화재조사학회지
    • /
    • 제5권1호
    • /
    • pp.25-28
    • /
    • 2004
  • Since the very first use of optical systems in the process industries there has been a tacit assumption that, because they are not electrical, they do not present an ignition risk when used in flammable atmospheres. This paper describes about an optical ignition mechanism from experimental work carnied out by Sira Safety Services Limited(UK) and whether there is sufficient of an ignition risk for precautions to be advisable when optical systems are used in flammable atmospheres.

  • PDF