• Title/Summary/Keyword: Flame soot

Search Result 205, Processing Time 0.022 seconds

Characterization of $SiO_2-P_2O_5-B_2O_3$ Glass Soot fabricated by Flame Hydrolysis Deposition (화염 가수분해 증착에 의해 형성된 $SiO_2-P_2O_5-B_2O_3$ 유리 미립자의 특성)

  • 최춘기;정명영;최태구
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.811-816
    • /
    • 1997
  • SiO2-P2O5-B2O3 glass soot was fabricated by flame hydrolysis deposition and their properties by SEM, XRD, TGA-DSC were investigated., The mechanism of consolidation process of a glass soot as a function of consolidation temperature was analyzed by SEM observations. In the XRD patterns, the crystalline peaks which seem to be generated from B2O3 and BPO4 were observed. When the temperature of heat treatment exceeded 105$0^{\circ}C$, the non-crystalline state of SiO2-P2O5-B2O3 glass was observed. In the TGA-DSC curves, the evaporation of water molecule by a sudden endothermic reaction was observed at 128$^{\circ}C$ and a broad endothermic peak was seen in the temperature range of 40$0^{\circ}C$-95$0^{\circ}C$, without any weight loss. Finally, this peak was began to recover its baseline at 953$^{\circ}C$. This point is equal to the temperature at which the densification begins. Furthermore, we observed that the addition of dopants such as P2O5 and B2O3 decrease the onset of consolidation temperature till 95$0^{\circ}C$.

  • PDF

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4-Air$ Diffusion Flame (화염편 모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim Gunhong;Kim Hoojoong;Kim Yongmo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2005
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept fur simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

A Study on the Flame Temperature and KL Value in Inner and Outer Cavity in a D.1. Diesel Engine (디젤엔진에서 Cavity 내 .외측의 화염온도와 KL치에 관한 연구)

  • 이태원;윤수한;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.18-27
    • /
    • 2002
  • Flame behavior in inner and outer the cavity and flame temperature have an important influence on the formation and oxidation of NOx and soot. Therefore, in this study, the combustion chamber of toroidal and reentrant that have different flow characteristics of inside and outside the cavity and load, and so forth are determined as parameters of experimental conditions. An attempt has been made to obtain the effect of flame temperature and KL value in idler and outer cavity on the formation and oxidation of soot using the two-color method.

Measurement of Temperature in Double-concentric Diffusion Flames by Rapid Insertion Technique (급속 삽입범에 의한 동축 이중 확산화염 내부 온도 분포의 측정)

  • Chung, J.R.;Nam, P.W.;Lee, G.W.;Jurng, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.231-240
    • /
    • 1999
  • The temperature distribution in double-concentric diffusion flames have been investigated experimentally by rapid insertion technique. Using a fine thermocouple and rapid insertion mechanism, the temperature has been measured before soot particles attach the thermocouple junction which can affect the temperature signal by changing the radiation heat loss. For double-concentric diffusion flames, the temperature at the axis is higher than that of normal coflow diffusion flames because of the inverse diffusion flame at the center of the flame. However, it is almost same at the periphery on which the inverse flame does not have an effect.

  • PDF

Basic Study on the Flame Stability of Burner for Regeneration of Diesel Particulate Filter in Engine Exhaust Gas (DPF 재생용 버너의 엔진 배기 중에서의 화염 안정성 구현을 위한 기초 연구)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Hong, Won-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.10-17
    • /
    • 2005
  • Sustaining of flame stability of the burner installed in Dielsel exhaust pipe is very difficult because of steep fluctuation of pressure and flow rate. A burner for DPF (Diesel Particulate Filter) which clogged by collected soot regeneration has been made of metal fiber for the purpose of realization of flame stability even in unfavorable condition of Diesel engine exhaust. Flame stability of the metal fiber burner has been investigated in various condition of engine operation. It has been identified that metal fiber burner with liner which has swirl guide vane presents excellent flame stability even in the higher engine revolutions than 3000rpm and sudden variation. The results offer the possibility of development of full flow burner system for DPF regeneration.

  • PDF

Combustion Characteristics of Ionized Fuels for Battery System Safety (배터리 시스템 안전을 위한 이온화 연료의 연소 특성)

  • Ko, Hyeok Ju;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • Many electronic devices are powered by various rechargeable batteries such as lithium-ion recently, and occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the results have been still unsatisfied. Because most rechargeable batteries are operated on the ion state during charge and discharge of electricity and the combustion of ion state has big difference with normal combustion. Here we focused on the effect of ions including an electron during combustion process. The effects of an ionized fuel on the flame stability and the combustion products were experimentally investigated in the propane jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the propane was ionized with th ionizer (SUNJE, SPN-11). The results show that toe overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased by fuel ionization, especially high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.

Tomographic Interpretations of Visible Emissions from the Axisymmetric Partially Premixed Flames (단층진단법을 이용한 축대칭 부분예혼합 화염의 자발광 스펙트럼 해석에 관한 연구)

  • Ha, Kwang-Soon;Choi, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.769-776
    • /
    • 2000
  • Visible spectral characteristics of cross-sectional emissions from a partially premixed methane/air and propane/air flames have been investigated. An optical train with a two-axis scanning mirror system was used to record line-of-sight emission spectra from 354nm to 618nm, and inversion technique was adapted to obtain cross-sectional emission spectra. By analyzing the reconstructed emission spectra, cross-sectional intensities of CH and $C_2$ radicals were separated from the background emissions. The blue flame edge and yellow flame edge were also obtained by image processing technique for edge detection with color photograph of flame. These edges were compared with radial distributions of CH, $C_2$ radicals and background emissions. The CH radicals were observed at blue flame edge. The background emissions were generated by soot precursor at upstream of flame and by soot at downstream of flame. The $C_2$ radicals in propane/air flame were observed more than those in methane/air flame.

Experimental Study on Soot Formation in Opposed-Flow Ethylene Diffusion Flames by Mixing DME as an Alternative Fuel (대체 연료인 DME 혼합에 의한 대향류 에틸렌 확산화염내 매연 생성에 대한 실험적 연구)

  • Yoon, Doo-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.301-306
    • /
    • 2010
  • DME(Di-Methyl Ehter, $CH_3OCH$) is currently attracting worldwide attention due to its environmentally friendly characteristics. Until now it was researched as a major alternative fuel of diesel automobile because it is a clean fuel producing low soot. Therefore, in this study, in order to investigate the effect of DME mixing on number density and size of soot particle, DME has been mixed in opposed-flow ethylene diffusion flame with the mixture ratios 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and size of soot particles. The experimental results showed that the soot concentration of mixture flames with the mixture ratios 5% and 14% produces soot more, even though that of 30% was decreased. This means that even though DME has been known to be a clean fuel for soot formation, the mixing of DME in diffusion flame of ethylene, where acetylene maintains high concentration in soot formation regions, could produce enhanced production of soot.

Tomographic Reconstruction of Asymmetric Soot Structure from Multi-angular Scanning (다각 주사법을 이용한 비대칭 매연분포의 재구성)

  • Lee, S.M.;Hwang, J.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.55-61
    • /
    • 1999
  • A convolution algorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric soot structure to identify the local soot volume fraction distribution. The line of sight integrated data from light extinction measurement with multi-angular scanning form basic information for the deconvolution. Multi-peak following interpolation technique is applied to obtain the effect of increasing number of scanning angles. Measurement of LII signal for the same flame shows the validity of this reconstruction technigue.

  • PDF

MODELLING STUDY OF THE EFFECT OF CHEMICAL ADDITIVES ON SOOT PRECURSORS REDUCTION

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.501-508
    • /
    • 2006
  • The effect of chemical additives, such as dimethyl ether(DME), ethanol, carbon disulfide on the soot formation were examined numerically. ill this study, the Frenklach soot mechanism was used as a base mechanism to predict the soot formation in the ethane flame. The combination of Westbrook's DME mechanism, Marinov's ethanol mechanism, and chemical kinetic mechanism for hydrogen sulfide and carbon disulfide flames was made with the base mechanism because the DME, ethanol, $CS_2$ additives are added into the ethane fuel. CHEMKIN code was used as a numerical analysis software to simulate the effect of chemical additives on reduction of the polycyclic aromatic hydrocarbons(PAH's) which are soot precursors. From the numerical results it is observed that addition of DME, ethanol and $CS_2$ into ethane fuel can reduce PAH species significantly. That means theses additives can reduce soot formation significantly. Results also strongly suggest suppression of soot formation by these additives to be mainly a chemical effect. Hand OH radicals may be the key species to the reduction of PAH species for additives.