• Title/Summary/Keyword: Flame shape

Search Result 242, Processing Time 0.027 seconds

The Influence of Combustor Atmospheric Pressure on Flame Characteristics (연소실 분위기 압력이 화염형상에 미치는 영향)

  • Kim, J.R.;Choi, G.M.;Kim, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1134-1139
    • /
    • 2004
  • Recently, development of flame control scheme has been hot issues in the combustion engineering. It has been held that flame shape can be controllable by pressure inside combustor. The influence of combustor atmospheric pressure on flame shape was investigated in the present study. The flame shape, flammable limit, flame temperature and nitric oxide emission were measured as functions of combustor atmospheric pressure and equivalence ratio. The reaction region became longer and wider with decreasing combustor atmospheric pressure by direct photography, hence reduction of blow off limit. This tendency was also observed in the mean flame temperature distribution. Nitric oxide emission decreased with decreasing combustor atmospheric pressure. Low NOx combustion is ascribed to wide-spread reaction region in the low atmospheric pressure condition. These results demonstrate that flame shape and nitric oxide emission can be controllable with combustor atmospheric pressure.

  • PDF

The Response of the Burke-Schumann Flame to External Excitation with Flame Shape and Heat Release (외부 교란에 대한 Burke-Schumann 화염에서 형상과 열방출량을 통한 응답 특성 파악)

  • Kim, Taesung;Ahn, Myunggeun;Hwang, Jeongjae;Jeong, Chanyeong;Kwon, Oh Chae;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.32-38
    • /
    • 2017
  • This paper shows the dynamics of the Burke-Schumann flame. To show flame dynamics, this paper measures the flame surface and heat release rate. The flame shape is divided into three types with forcing frequencies. When the forcing frequency is lower than 120 Hz, the upper region of flame is cut. The flame is stagnant with 220 to 280 Hz forcing frequencies. The rest conditions of forcing frequencies make the connected wave shape of flame. The heat release rate is expressed by the flame transfer function. The gain of the flame transfer function is similar with the oscillation magnitude of the flame area except for flame cutting conditions. The flame is cut because the fuel is not supplied to upper flame region.

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular Jets

  • Kim K. N.;Joung J. H.;Jin S. H.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.147-155
    • /
    • 2004
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^*$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The flame shape during flame oscillation was reconfirmed by a synchronized PIV experiment. The velocity and pressure field were obtained from PIV. The minimum pressure was formed near the edge of flame representing circulation. By comparing the results of sound pressure, flame luminosity and PIV, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames.

  • PDF

The Flame Characteristics of Annular Combustor for Gas Turbine according to Combustor Length Ratio (가스터빈용 환형연소기의 연소실 길이비에 따른 화염특성)

  • Kim, Jaeyeong;Lee, Dongwon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.127-130
    • /
    • 2015
  • The objective of this study is to investigate the real flame shape and characteristic of annular combustor. To identify the effects of combustor length ratio and equivalence ratio on the flame shape in annular combustion configuration, the employed parameters are combustor length ratio 0.6-1.0, equivalence ratio 0.7-1.1. The flame shape is visualized using DSLR camera and precision optic mirror. The flame intensity is analyzed by $OH^{*}$ chemiluminescence images with ICCD camera. CO and NOx emission performance is also examined using an exhaust gas analyzer. From the visualized images, it is confirmed that the different tendency appeared in combustor length ratio 0.6-0.7 and 0.8-1.0. The results of $OH^{*}$ chemiluminescence show that the flame intensity is the most uniform for equivalence ratio 0.9. The smaller equivalence ratio is, the less emission of CO and NOx will be in this investigation range.

  • PDF

Effect of Acoustical Excitation and Flame Stabilizer on a Diffusion Flame Characteristics (음향가진과 보염기형상이 확산화염의 특성에 미치는 영향)

  • Jeon, C.H.;Chang, Y.J.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Lots of techniques are adopted for a flame stabilization and a high-load combustion. But the techniques being used were passive control method which have to change combustor shape like pilot flame, flame stabilizer, pressure profile, etc. Active control method which is not necessary to transform its shape is employed. Acoustical excitation is broadly used for its convenience in changing frequency and intensity. Both acoustical excitation and flame stabilizers were adopted to study their relationship. So, we investigated flammability limits. Flame visualization. And mean temperature in the condition of various frequencies, intensities, and flame stabilizers. As a consequence, flammability limit were advanced in acoustically excited flame at some frequencies. Coherent structure was extended to the downstream region through acoustical excitation and a size of vortice was curtailed. Also width of recirculation zone was magnified. In addition, Effects of acoustical excitation was stood out at 25mm flame stabilizer rather than another ones.

  • PDF

Overview of Fire Safety onboard International Space Station(ISS): Characteristics of Flame Ignition, Shape, Spread, and Extinction in Microgravity (국제우주정거장 화재안전 연구개괄: 마이크로중력화염의 특성(점화/형상/전파/소멸특성))

  • Park, Seul-Hyun;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.21-29
    • /
    • 2012
  • Due to a significant leap in the science and technology, the manned space exploration that has started with suborbital flights is now being expanded into the deep space. The space superpowers such as the U.S. and Russia have been making an effort to further develop the manned space technology. Among such technologies, the fire safety technology in microgravity has recolonized as one of the most critical factors that must be considered for the manned space mission design since the realistic fire broke out onboard the Mir station in 1997. In the present study, the flame characteristics such as flame ignition, shape, spread, and extinction that are critical to understand the fire behavior under microgravity conditions are described and discussed. The absence of buoyancy in microgravity dominates the mass transport driven by diffusiophoretic and thermophorectic fluxes (that are negligible in normal gravity) and influences the overall flame characteristics-flame ignition, shape, spread, and extinction. In addition, the cabin environments of the pressurized module (PM) including the oxygen concentration, ambient pressure, and ventilation flow(which are always coupled with microgravity condition during the ISS operation) are found to be the most important aspects in characterizing the fire behavior in microgravity.

A Study on the Control of Flame Shapes in Laminar Pre-Mixed Flames (층류 예혼합화염의 화염면 형상 제어에 관한 연구)

  • Lee, Won-Nam;Seo, Dong-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.103-108
    • /
    • 2003
  • The control of flame shapes in a laminar pre-mixed flame has been experimentally investigated for propane/air pre-mixed laminar flames. Flames of different size and shapes are observed with heated wires or by controlling the equivalence ratio and flow rate of a mixture. The characteristics of the partitioning of a flame or the merge of flames are analyzed and explained by considering the balance between laminar flame speed and upstream mixture velocity. A combustor might be sized down while maintaining its heat production rate the same by partitioning a flame established in it. When the equivalence ratio of mixture is decreased, individual flames are merged together and the upstream mixture velocity can be practically decreased on a nozzle having opening ratio less than unity. As a result, the flame shape is to he adjusted until the newly established balanced condition is satisfied, and then. the stable combustion can be achieved again.

  • PDF

The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber (정적 연소실내에서 화염 전파 과정에 대한 실험적 연구)

  • Kim, Chun-Jung;Kang, Kyung-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

A Study on Combustion Characteristics of the Methane-Hydrogen Lean Mixture by Using Multiple Spark Capacity Discharge in a CVCC (II) (반복점화장치 사용시 정적연소실내 메탄-수소 희박혼합기의 연소특성 연구(II))

  • Kim Bong-Seock
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.311-318
    • /
    • 2004
  • In the present study, the combustion characteristics of methane and hydrogen-supplemented methane as alternative fuels for automotive vehicles were investigated at various hydrogen substitution rate, ignition position and ignition methods in a CVCC. The main results obtained from the study can be summarized as follow. In case of center ignition and neat methane-air mixture, the flame propagation processes are propagated with an elliptical shape, but they are changed an instable elliptical shape flame with very regular cells and higher velocity by increasing the hydrogen supplement rate. In case of side, 0.5R ignition and neat methane-air mixture, the flame propagation processes are propagated with an instable elliptical shape flame, but they are changed from an instable elliptical shape to wedge shape flame with very irregular cells and higher velocity by increasing the hydrogen supplement rate. Although the flame propagation shape with ignition position and ignition devices was not differ, the flame area of MSCDI device was a little larger than it of CDI device at the same time.

Combustion Characteristics of Methane-Hydrogen-Air Premixture(II) (메탄-수소-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF