The Response of the Burke-Schumann Flame to External Excitation with Flame Shape and Heat Release |
Kim, Taesung
(Department of Mechanical and Aerospace Engineering, Seoul National University)
Ahn, Myunggeun (Department of Mechanical and Aerospace Engineering, Seoul National University) Hwang, Jeongjae (Department of Eco-Machinery System, Korea Institute of Machinery and Materials) Jeong, Chanyeong (Department of Mechanical and Aerospace Engineering, Seoul National University) Kwon, Oh Chae (School of Mechanical Engineering, Sungkyunkwan University) Yoon, Youngbin (Department of Mechanical and Aerospace Engineering and the Institute of Advanced Aerospace Technology, Seoul National University) |
1 | M. Tyagi, N. Jamadar and S.R. Chakravarthy, Oscillatory Response of an Idealized Two-dimensional Diffusion Flame: Analytical and Numerical Study, Combust. Flame, 149 (2007) 271-285. DOI |
2 | M. Tyagi, S.R. Chakravarthy and R.I. Sujith, Unsteady Combustion Response of a Ducted Non-premixed Flame and Acoustic Coupling, Combust. Theory Model., 11(2) (2007) 205-226. DOI |
3 | Z. Yao and M. Zhu, A Distributed Transfer Function for Non-premixed Combustion Oscillations, Combust. Sci. Technol., 184 (2012) 767-790. DOI |
4 | K. Balrsubramanian and R.I. Sujith, Nonlinear Response of Diffusion Flames to Uniform Velocity Disturbances, Combust. Sci. Technol., 180 (2008) 418-436. DOI |
5 | N. Magina, D. Shin, V. Acharya and T. Lieuwen, Response of Non-premixed Flames to Bulk Flow Perturbations, Proc. Combust. Inst., 34 (2013) 963-971. DOI |
6 | N. Magina, V. Acharya, T. Sun and T. Lieuwen, Propagation, Dissipation and Dispersion of Disturbances on Harmonically Forced, Non-premixed Flames, Proc. Combust. Inst., 35 (2015) 1097-1105. DOI |
7 | N. Magina and T. Lieuwen, Effect of Axial Diffusion on the Response of Diffusion Flames to Axial Flow Perturbations, Combust. Flame, 167 (2016) 395-408. DOI |
8 | T. Kim, M. Ahn, J. Hwang, S. Kim and Y. Yoon, The Experimental Investigation on the Response of the Burke-Schumann Flame to Acoustic Excitation, Proc. Combust. Inst., 36 (2017) 1629-1636. DOI |
9 | J. Kim, M. Yoon and D. Kim, Combustion Stability Analysis using Feedbavk Transfer Function, J. Korean Soc. Combust., 21(3) (2016) 24-31. DOI |
10 | S. Ducruix, D. Durox and S. Candel, Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame, Proc. Combust. Inst., 28 (2000) 765-773. DOI |
11 | T. Schuller, D. Durox and S. Candel, A Unified Model for the Prediction of Laminar Flame Transfer Functions : Comparisons between Conical and V-flame Dynamics, Combust. Flame, 134 (2003) 21-34. DOI |
12 | N. Noiray, D. Durox, T. Schuller and S. Candel, A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function, J. Fluid Mech., 615 (2008) 139-167. DOI |
13 | D. Kim, J.G. Lee, B.D. Quay, D.A. Santavicca, K. Kim and S. Srinivasan, Effect of Flame Structure on the Flame Transfer Function is a Premixed Gas Turbine Combustor, J. Eng. Gas Turbines Power, 132 (2010) 021501. DOI |
14 | K.T. Kim, J.G. Lee, B.D. Quay and D.A. Santavicca, Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations, Combust. Flame, 157 (2010) 1731-1744. DOI |
15 | S. Farhat, D. Kleiner and Y. Zhang, Jet Diffusion Flame Characteristics in a Loudspeaker-induced Standing wave, Combust. Flame, 142 (2005) 317-323. DOI |
16 | M. Kim, Y. Choi, J. Oh and Y. Yoon, Flame-vortex Interaction and Mixing Behaviors of Turbulent Non-premixed Jet Flames under Acoustic Forcing, Combust. Flame, 156 (2009) 2252-2263. DOI |