• Title/Summary/Keyword: Flame calorimeter

Search Result 91, Processing Time 0.028 seconds

A STUDY ON THE FLAMMABILITY OF NON-FLAME-RETARDANT AND FLAME-RETARDANT MATERIALS BY USING CONE CALORIMETER

  • Yanai, Eiji;Suzuki, Takeshi;Yamada, Tokiyoshi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.85-92
    • /
    • 1997
  • Flammability of non-flame-retardant and flame-retardant materials was studied by using cone calorimeter Also, relations between the results obtained by using cone calorimeter and those obtained by the flammability test of japanese fire Service Law were examined. The results are as follows: 1) The ignition time of the molten specimens is relatively long, whereas the ignition time of the non-molten specimens is short. None of remarkable difference of the ignition time has been found between non-flame-retardant and flame-retardant materials specimens. 2) The peak heat release rates of flame-retardant materials are smaller than those of non-flame- retardant materials. 3) The carbon monoxide and smoke evolved from flame-retardant materials generate much more than those evolved from non-flame-retardant materials. 4) Even if flame-retardant materials are passed by the flammability test of Japanese Fire Service Law, they burn easily under external radiative heating condition.

  • PDF

Preparation & Properties of the Flame Retarded NBR Foams with Phosphorus/Nitrogen-Containing Flame Retardants (인/질소계 난연제를 포함한 난연 NBR 발포체의 제조 및 특성)

  • Jo, Byung-Wook;Moon, Sung-Chul;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.105-120
    • /
    • 2004
  • The flame retarded NBR foams were prepared with metal hydroxides and various phosphorus/nitrogen-contain ing flame retardants. The dependency of the phosphorus content on thermal properties, flame retardancy, smoke density, and foaming properties were investigated in the foams. Foaming properties and morphology of the flame retarded NBR foams with P/N flame retardants( ${\le}10 phr$) were similar to those of the foams without P/N ones but containing metal hydroxides The flame retardancy of the foams was improved with increasing the phosphorus content and char formation under combustion atmosphere. The cone-calorimeter test and LOI index were also coincided with the TGA analysis quite well. The heat release rate (HRR), total heat release (THR), and effective heat of combustion (EHC) were decreased, whereas the carbon monoxide yield was increased with increase of the phosphorus content of P/N flame retardant. The smoke density values were closely related with CO yield values obtained by the cone-calorimeter test due to the high and hard char formation.

Flame Retardant Properties of Polyurethane by the Addition of Phosphorus Compounds (인계 화합물의 첨가에 의한 폴리우레탄의 난연성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.110-115
    • /
    • 2006
  • Polyurethane(PU) was mixtured by the treatment with flame retardants such as Tri(chloroisopropyl) phosphate(TCPP), Triethyl phosphate(TEP) and Trimethyl phosphate(TMP) at about $90^{\circ}C$. Rigid polyurethane foam was produced using the mixured products as flame retardants. The mechanical property and flammability of rigid polyurethane was investigated. The mixtured polyurethane shows reduced flammability over virgin polyurethane. Mechanical strength of mixtured polyurethane also shows as high as that of virgin polyurethane. In order to evaluate flame retardant properties of the mixtured polyurethane foams, heat release rate(HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of mixtured PU shows uniform cell morphology as virgin PU.

Measurement of Calorific Value Using Flame Calorimeter (전자 소자를 이용한 연소열 측정)

  • Lim, Ki-Won;Jun, Jin-Young;Lee, Byeong-Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • Calorific value of mixed gas, like liquefied natural gas (LNG), is strongly depends on its compositions which are affected by the mining place and producing time. The variation in calorific value have an direct influence on the combustion characteristics and performances of boiler, burner, vehicle, power plants etc. Thus, developing experimental method to measure exact calorific value is becoming an issue in the related industrial fields. Flame calorimeter is developed to get calorific value at the dynamic equilibrium state using electric substitution method. Refrigerant-11 carries heat from combustor and/or heater to the Peltier elements which pumped it out to the cooling water. It is found out that error in the measured calorific value of methane is 2.86% compared with the theoretical one. Developed design technique and the experimental data will be applied to design the national standard gas calorific value measuring apparatus.

An Experimental Study on Smoke Generation of Rubber Floor for Railway Vehicle (철도차량용 고무바닥재의 연기발생에 관한 실험적 연구)

  • Park, Young Ju
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • In this study, we have performed the Cone Calorimeter test and Smoke density test in accordance with ISO 5660-1 and ASTM E662 respectively to check the smoke production characteristics of rubber flooring materials for railway vehicle. Early in the ASTM E662 test, more smoke was produced in the flame mode test than non-flame mode test, but later more smoke was produced in non-flame mode test. The correlation($R^2$) between TSR(Total Smoke Release) by ISO 5660-1 and Ds(Specific Optical Density) by ASTM E662 Flame mode was 0.782. The $R^2$ between TSR by ISO 5660-1 and Ds by ASTM E662 Non-flame was 0.930.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

Fire Retardancy of Recycled Polyurethane Foam Containing Phosphorus Compounds (인계화합물을 포함한 재활용 폴리우레탄폼의 난연성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.182-189
    • /
    • 2007
  • Used polyurethane was chemically degraded by treatments with flame retardants such as tris(3-chloropropyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). The structure of degraded products (DEP) was analyzed by FT-IR and P-NMR and it turned out to be phosphorus containing oligourethanes. Rigid polyurethane foam was produced by using the degraded products (DEP) as flame retardants. The flammability of recycled rigid polyurethane was investigated. The recycled polyurethane shows a reduced flammability over virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, the combustion parameters of the foam was measured by a cone calorimeter. Scanning electron micrograph of recycled PU shows the same uniform cell morphology as virgin PU.

Study on Flame Retardancy and Thermal Resistance Properties of Phenolic Foam and Polyurethane Foam (페놀 폼과 폴리우레탄 폼의 난연 및 내열성 연구)

  • Lee, Ju-Chan;Seo, Jung-Seok;Kim, Sang Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, flame retardancy of polyurethane foam and phenolic foam were investigated by addition of phosphorous flame retardants. The thermal degradation behavior of polyurethane foam and phenolic foam in the presence of flame retardants has been studied by thermogravimetric analysis(TGA). Heat release rate(HRR), mean HRR, mass loss rate(MLR), total smoke released(TSR) and limited oxygen index(LOI) were tested by cone calorimeter. From the test results, Phenolic foam showed low HRR, MLR and TSR than polyurethane foam.

Synthesis of flame retardant acrylic emulsion pressure sensitive adhesives by co-polymerization with phosphoric flame retardant monomer (인계 난연 단량체와의 공중합을 통한 난연성 수성 아크릴 에멀젼 점착제 제조)

  • Jeon, Min Seok;Jung, Ji Hun;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.135-139
    • /
    • 2019
  • In this work, flame retardant acrylic emulsion pressure sensitive adhesives were newly polymerized combining phosphorous flame retardant monomer and acrylic monomer like butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, acrylic acid, and 2-hydroxyethyl methacrylate. The process of polymerization showed 100% of conversion at solid content of 65%, and viscosity of acrylic emulsion was increased up to 5500 cps when phosphorous flame retardant monomer was added into acrylic emulsion. The structure of flame retardant acrylic emulsion was identified using FT-IR and thermal properties like glass transition temperature (Tg) were checked by differential scanning calorimeter (DSC). Acrylic emulsion without phosphorous flame retardant monomer had Tg of -44.1℃ and peel strength of 2,100gf/inch, however, flame retardant acrylic emulsion showed maximum Tg (-31.4℃) and peel strength of 200gf/inch when 15 part of phosphorous flame retardant monomer was added. Flammability test was also conducted to confirm the application of flame retardant acrylic emulsion as the flame retardant addtive.

Influence of Radiant Heat Flux on Combustion Properties of Flame Retardant Cable (케이블의 난연성능에 따른 복사 열유속이 연소물성에 미치는 영향)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2019
  • The combustion properties required for fire simulations of multi-layer, multi-component flame retardant cables were measured using a cone calorimeter. The CO and soot yields combustion efficiencies of the flame retardant cables were investigated. TFR-8 (flame retardant PCV and XLPE added), TFR-CVV-SB (flame retardant PCV and general PVC), and VCTF, which are excellent in the flame retardancy of cables, were considered. As the main result, the CO yield (yCO) of the TFR-8 and TFR-CVV-SB flame retardant cables increased by 23% and 16%, respectively, with increasing incident radiation heat flux from 25 kW/㎡ to 50 kW/㎡. On the other hand, the CO yield of VCTF was not influenced significantly by the changes in radiant heat flux. Finally, the soot yield and combustion efficiency increased as the sheath material (flame retardant performance) was strengthened. Therefore, in a fire environment where various heat fluxes coexist, attention should be paid to the top of the application of the combustion property of the flame retardant cable.