• Title/Summary/Keyword: Flame Retardancy

Search Result 187, Processing Time 0.028 seconds

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

Syntheses and Properties of the Newly Designed Acrylonitrile-Chloroprene-Styrene(ACS) Copolymers for the Improvement of Flame Resistance (난연성 Acrylonitrile-Chloroprene-Styrene(ACS) 신소재의 합성과 물성)

  • Ahn, Il-Seon;Ha, Chang-Sik;Lee, Jin-Kook;Cho, Won-Jei
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.130-137
    • /
    • 1992
  • The Graft copolymerization of acrylonitrile(AN) and styrene(ST) onto chloroprene rubber(CR) were carried out with benzoyl peroxide(BPO) as an initiator. The synthesized graft copolymer(ACS) was separated from polymeric mixture by the extraction with ethyl acetate and n-hexane, acetone and methanol, dimethylformamide(DMF) and methanol mixed solvent systems. The graft copolymer obtained, acrylonitrile-chloroprene-styrene(ACS) was identified by IR spectrophotometer. The effect of mole ratio of styrene to acrylonitrile, reaction time and temperature, initiator concentration, CR content and solvents on graft copolymerization were examined. It was observed that the grafting efficiency increased with [ST]/[AN] mole ratio and reaction time. The grafting efficiency increased with increasing initiator concentration and CR content. The maximum grafting efficiency was obtained when the mole ratio of [ST]/[AN] was 1.5 and reaction was made at 40hrs, and $70^{\circ}C$ using chloroform/toluene mixed solvent. The thermal properties, light resistance and flammability of ACS were compared with those of ABS and AES. It was found that flame retardancy of related polymers increased in the order ACS>ABS>AES. The thermal stability of ACS was greatly improved when compared with ABS or AES. Morphology of ACS was also investigated by using a transmisson electron microscope(TEM).

  • PDF

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.

Burning Behavior of Flooring Materials in the Cone Calorimeter and Evaluation of Toxic Smoke (콘 칼로리미터를 이용한 건축 바닥재의 연소거동과 가스유해성 평가)

  • Lee, Jang-Won;Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • The burning behaviors of board for flooring materials were investigated using cone calorimetry at an incident heat flux of $50kWm^{-2}$. Seven domestic flooring materials were used to observe the burning behavior of maximum heat release rate, total heat release and average heat release rate. The experimental data indicated that the medium density fiberboard (MDF) flooring had higher release rate than the other flooring materials. Also, the mass loss of MDF flooring was higher than the other floors. When measuring the smoke production from burning, PE fiberboard flooring and PVC Plastic Resin Sheet showed higher carbon monoxide and carbon dioxide yield than the others. The average smoke release of both carbon dioxide and carbon monoxide through specific extinction area was similar. Toxic smoke measurement from flooring materials were determined by the mouse stop motion, and the results indicated that MDF flooring contains more toxic material than the other flooring materials.

Preparation and Properties of Low Density Polyethylene/Organo-clay Nanocomposite (저밀도 폴리에틸렌 나노복합재료의 제조 및 특성)

  • Moon, Sung-Chul;Jung, Hyo-Sun;Lee, Jae-CHul;Hong, Jin-Who;Choi, Jae-Kon;Jo, Byung-Wook
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • In this study, low density polyethylene/organo-clay nanocomposites were prepared by melt blending. Thermal property, structure, and morphology of the LDPE/organo-clay nanocomposites were investigated. When the composition ratios of the compounds of LDPE/PE-g-MA/organo-clay were 90/10/1~10 (w/w/w), X-ray diffractograms of LDPE/organo-clay nanocomposites revealed that the intercalation of polymer chains lead to increase the spacing between clay layers. TEM microphotographs showed that LDPE was intercalated into organo-clay. TGA performed under air atmosphere demonstrated a great increase in thermal stability of the LDPE/organo-clay nanocomposties. The maximum decomposition temperature of LDPE/organo-clay nanocomposite was increased about $80^{\circ}C$ compared with pure LDPE. When the organo-clay contents were 1.0~5.0 wt%, the LOI values were increased with increasing the organo-clay content, but in the case of the contents more than 5.0 wt%, the LOI values were not increased any more.

Evaluation of the Burning Properties of Various Carpet Samples by using the Cone Calorimeter and Gas Toxicity Test (콘칼로리미터와 가스유해성 시험법을 이용한 카페트류의 연소특성 평가)

  • Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Jang-Won;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the burning behaviours of five different kinds of carpet samples covered with nylon, PP (polypropylene), PTT (poly(trimethylene terephthalate)), wool fabric and NW (nylon and wool) were evaluated by using the cone calorimeter having a radiant flux of 50kW/$m^2$. And the combustion gas toxicity was evaluated according to KS F 2271 test method. As a result of the cone calorimeter test (KS F ISO 5660-1), nylon carpet samples were ignited most easily. In ignition ability or initial flammability, NW carpet samples showed the highest value. In heat release rate (HRR), fire intensity, PP carpet samples were larger than any other samples. Nylon carpet samples were the highest smoke production rate, while N/W carpet samples the lowest. The following were in mass loss rates: NW > wool > nylon > PP > PTT. CO (carbon monoxide) was one of the most toxic gases released from the combustion. PTT carpet samples gave rise to the highest CO concentration, while NW carpet samples the lowest. In addition, PP carpet samples caused the highest $CO_2$ (carbon dioxide) concentration, while NW carpet samples the lowest. Toxicity of the gas produced from carpet samples was determined by the mouse stop motion, and it resulted in the fact that the combustion gas of PTT carpet samples was more toxic than that of any other samples.