Membrane Application of Polymer/Layered Silicate Nanocomposite

고분자/층상실리케이트 나노복합체의 분리막에의 응용

  • Park, Ji-Soon (Department of Polymer Science and Engineering, Gyeongsang National University) ;
  • Rhim, Ji-Won (Department of Chemical Engineering Hannam University) ;
  • Goo, Hyung-Seo (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, In-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Nam, Sang-Yong (Department of Polymer Science and Engineering, Gyeongsang National University)
  • 박지순 (경상대학교 고분자공학과) ;
  • 임지원 (한남대학교 화학공학과) ;
  • 구형서 (충남대학교 공과대학 화학공학과) ;
  • 김인호 (충남대학교 공과대학 화학공학과) ;
  • 남상용 (경상대학교 고분자공학과)
  • Published : 2005.12.01

Abstract

polymer/layered silicate nanocomposite (PLSNs) is new type of materials, based on clays usually rendered hydrophobic through ionic exchange of the sodium interlayer cation with an onium cation. It could be prepared via various synthetic routes comprising exfoliation adsorption, in situ intercalative polymerization and melt intercalation. The whole range of polymer is used, i.e. thermoplastics, thermosets and elastomers as a matrix. Two types of structure may be obtained, namely intercalated nanocomposites where the polymer chains are sandwiched in between silicate layers and exfolicate nanocomposites where the separated, individual silicate layers are more or less uniformly dispersed in the polymer matrix. This new family of materials exhibits enhanced properties at very low filer level, usually inferior to 5wt$\%$, such as increased mechanical properties, increase in thermal stability and gas barrier properties and good flame retardancy. Gas permeability through the PLSNs films decreased due to increased tortuosity made by intercalation or exfoliation of clay in polymer.

고분자/층상실리케이트 나노복합체(polymer/layeres silicate nanocomposite, PLSNs) 필름은 보통 내부층을 나트륨과 같은 양이온을 이용한 이온교환을 통해 유기화된 clay로 만든 재료의 새로운 형태이다. 이것은 중합법, 용액법, 그리고 용융법과 같은 다양한 방법으로 제조할 수 있으며, 열경화성, 열가소성이나 탄성고분자와 같은 넓은 범위의 고분자를 기질로 사용할 수 있다. PLSNs 필름은 고분자 사슬이 일정한 간격으로 쌓여있는 실리케이트에 삽입하여 간격을 넓히는 삽입형과 각각의 실리케이트 층이 고분자 기질에 불균일하게 분산되어 형성하는 박리형 두 가지 형태의 구조를 얻을 수 있다. 이러한 새로운 분야의 재료는 보통 5 wt$\%$ 이하의 소량의 clay 함유만으로도 향상된 기계적, 열적 특성을 얻을 수 있다. 그리고 clay의 함유량이 증가할수록 기체 투과경로인 tortuosity가 증가하여 기체 투과도가 감소한다.

Keywords

References

  1. 'Nanocomposites: Forword', Composites:Part B., 35, 75-77 (2004) https://doi.org/10.1016/j.compositesb.2003.12.001
  2. R. A. Vaia and H. D. Wagner, 'Framework for nanocomposites', Materialstoday (2004)
  3. J. E. Mark, 'Ceramic reinforced polymers and polymer-modified ceramics', Polym. Eng. Sci., 36, 2905-2920 (1996) https://doi.org/10.1002/pen.10692
  4. E. Reynaud, C. Gauthier, and J. Perez, 'Nanophases in polymers', Rev. Metall./Cah. Inf. Tech., 96, 169-176 (1999)
  5. T. von Weme and T. E Patten 'Preparation of structurally well defined polymer-nanoparticle hybrids with controlled/living radical polymerization', J. Am. Chem, Soc., 121, 7409-7410 (1999) https://doi.org/10.1021/ja991108l
  6. N. Herron and D. L. Thorn, 'Nanoparticles. Uses and relationships to molecular clusters', Adv. Mater., 10, 1173-1184 (1998) https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1173::AID-ADMA1173>3.0.CO;2-6
  7. P. Calvert, 'Potential applications of nanotubes, in: T.W.Ebbesen (Ed.), Carbon Nanotubes', pp. 277-292, CRC Pressn Boca Raton, FL (1997)
  8. V. Favier, G. R. Canova, S. C. Shrivastava, and 1. Y. Cavaille, 'Mechanical percolation in cellulose whiskers nanocomposites', Polym. Eng. Sci., 37, 1732-1739 (1997) https://doi.org/10.1002/pen.11821
  9. B. K. G. Theng, 'The Chemistry of Clay-Organic Reactions', Wiley, New York(1974)
  10. M. Ogawa and K. Kuroda, 'Preparation of inorganic-organic nanocomposites through intercalation of prganoammonium ions into layered silicates', Bull. Chem. Soc. Jpn., 70, 2593-2618 (1997) https://doi.org/10.1246/bcsj.70.2593
  11. A. Blumstein, 'Etude de polymerizations en couche adsorbee I', Bull. Chim. Soc., 899-905 (1961)
  12. A. Blumstein, 'Polymerization of adsorbed monolayers: II. Thermal degradation of the inserted polymers', J. Polym. Sci. A., 3, 2665-2673 (1965)
  13. B. K. G. Theng, 'Formation and properties of clay-polymer complexes', Amsterdam: Elsevier (1979)
  14. A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, and O. Kamigaito, 'Synthesis and properties of nylon-6/clay hybrids', In: Schaefer DW, Mark JE, editors., 'Polymer based molecular composites. MRS Symposium Proceeding', Pittsburgh., 171, 45-50 (1990)
  15. R. A. Vaia, H. Ishii, and E. P. Giannelis, 'Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates', Chem. Mater., 5, 1694-6 (1993) https://doi.org/10.1021/cm00036a004
  16. S. S. Ray and M. Okamoto, 'Polymer/layered silicate nanocomposites: a review from preparation to processing', Prog. Polym. Sci., 28, 1539-1641 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  17. C. Oriakhi, 'Nano sandwiches', Chem. Br. 34, 59-62 (1998)
  18. Y. Kojima, A, Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Karauchi, and O. Kamigaito, 'Mechanical properties of nylon-6-clay hybrid', J Mater. Res., 8,1185-1189 (1993) https://doi.org/10.1557/JMR.1993.1185
  19. R. Krishnamoorti and E. P. Giannelis, 'Rheology of End-Tethered Polymer-Layered Silicate Nanocomposites', Macromolecules., 30, 4097 (1997)
  20. E. P. giannelis, R. Krishnamoorti, and E. Manias, 'Polymer-silica nanocomposites: model systems for confined polymers and polymer brushes', Adv. Polym. Sci., 118, 108-147 (1999)
  21. B. Lepoittevin, N. Pantoustier, M. Devalckenaere, and M. P. Dubois, 'Poly(epsilon $\epsilon$-caprolactone)/ clay nanocomposites by in-situ intercalative - polymerization catalyzed by dibutyltin dimethoxide', Macromolecules, 35, 8385-8390 (2002) https://doi.org/10.1021/ma020300w
  22. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, 'Mechanism of clay tactoidexfoliation in epoxy-clay nanocomposites', Chem. Mater., 7, 2144-2150, (1995) https://doi.org/10.1021/cm00059a023
  23. C. Zilg, R. Thomann, J. Finter, and R. Mulhaupt, 'The influence of silicate modification and compatibilizers on mechanical properties and morphology of anhydride-cured epoxy nanocomposites', Macromolecular Materials and engineering., 280, 41-46 (2000) https://doi.org/10.1002/1439-2054(20000801)280:1<41::AID-MAME41>3.0.CO;2-Z
  24. Y. C. Ke, J. K. Lu, X. S. Vi, J. Zhao, and Z. N. Qi, 'The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites', J Appl. Polym. Sci., 78, 808-815 (2000) https://doi.org/10.1002/1097-4628(20001024)78:4<808::AID-APP140>3.0.CO;2-9
  25. M. Wang' and T. J. Pinnavaia, 'Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin', Chem. Materials, 6, 468 (1994)
  26. P. B. Messersmith and E. P. Giannelis, 'Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites', Chem. Mater., 6, 1719 (1994)
  27. J. M. Brown, D. Curliss, and R. A. Vaia, 'Thermoset-Layered Silicate Nanocomposites. Quaternary Ammonium Montmorillonite with Primary Diamine Cured Epoxies', Chem. Mater., 12, 3376 -3384 (2000) https://doi.org/10.1021/cm000477+
  28. P. Aranda, E. Ruiz-Hitzky, 'Poly(ethylene oxide)silicate intercalation materials', Chem. Mater., 4, 1395-1403 (1992) https://doi.org/10.1021/cm00024a048
  29. D. J. Greenland, 'Adsorption of poly(vinyl alcohols) by montmorillonite', J Colloid. Sci., 18; 647-664 (1963) https://doi.org/10.1016/0095-8522(63)90058-8
  30. C. W. Francis, 'Adsorption of polyvinylpyrrolidone on reference clay minerals', Soil. Sci., 115, 40-54 (1973) https://doi.org/10.1097/00010694-197301000-00007
  31. X. Zhao, K. Urano, and S. Ogasawara, 'Adsorption of poly( ethylene vinyl alcohol) from aqueous solution on montmorillonite clays', Colloid. Polym. Sci., 267, 899-906 (1989) https://doi.org/10.1007/BF01410338
  32. G. Jimenes, N. Ogata, H. Kawai, and T. Ogihara, 'Structure and thermal/mechanical properties of poly( $\epsilon$-caprolactone )-clay blend', J. Appl. Polym. Sci., 64, 2211-2220 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2211::AID-APP17>3.0.CO;2-6
  33. N. Ogata, C. Jimenez, H. Kawai, and T. Ogihara, 'Structure and thermal/mechanical properties of poly(L-lactide)-clay blend', J. Polym. Sci. Part B: Polym. Phys., 35, 389-96 (1997) https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E
  34. H. G. Jeon, H. T. Jung, S. W. Lee, and S. D. Hudson, 'Morphology of polymer silicate nanocomposites. High density polyethylene and a nitrile', Polym. Bull., 41, 107-113 (1998) https://doi.org/10.1007/s002890050339
  35. H. J. Choi, S. G. Kim, Y. H. Hyun, and M. S. Jhon, 'Preparation and rheological characteristics of solvent-cast poly( ethylene oxide )/montmorillonite nanocomposites', Macromol Rapid Common, 22, 320-325 (2005)
  36. Y. Kojima, A, Usuki, M. Kawasumi, A. Okada, T. Karauchi, and O. Kamigaito, 'Synthesis of nylon6-clay hybrid by montmorillonite intercalated with s-caprolactam', J. Polym. Sci. Part A: Polym. Chem., 31, 983-986 (1993) https://doi.org/10.1002/pola.1993.080310418
  37. Y. Kojima, A, Usuki, M. Kawasumi, A. Okada, T. Karauchi, and O. Kamigaito, 'One-pot synthesis of nylon-6-clay hybrid', J. Polym. Sci. Part A: Polym. Chem.,31, 1755-1758 (1993) https://doi.org/10.1002/pola.1993.080310714
  38. L. M. Liu, Z. N. Qi, and X. G. Zhu, 'Studies on nylon-S clay nanocomposites by melt-intercalation process', J. Appl. Polym. Sci., 71, 1133-1138 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1133::AID-APP11>3.0.CO;2-N
  39. Z. Wang and T. J. Pinnavaia, 'Hybrid organicinorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer', Chem. Mater., 10, 1820-1826 (1998) https://doi.org/10.1021/cm970784o
  40. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, 'Mechanism of clay tactoid exfoliation in epoxyclay nanocomposites', Chem. Mater., 7, 2144-2150 (1995) https://doi.org/10.1021/cm00059a023
  41. C. Zilg, R. Mulhaupt, and J. Finter, 'Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates', Macromol. Chem. Phys., 200, 661-670 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4
  42. D. C. Lee and L. W. Jang, 'Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization', J. Appl. Polym. Sci., 61, 1117-1122 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1117::AID-APP7>3.0.CO;2-P
  43. N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, and A. Okada, 'Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer', J. Appl. Polym., 67, 87-92 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<87::AID-APP10>3.0.CO;2-2
  44. M. W. Noh and D. C. Lee, 'synthesis and characterization of PS-clay nanocomposite by emulsion polymerization', Polym. Bull., 42, 619-626 (1999) https://doi.org/10.1007/s002890050510
  45. Z. wang and T. J. Pinnavaia, 'Nanolayer reinforcement of elastomeric polyurethane', Chem. Mater., 10, 3769-3771 (1998) https://doi.org/10.1021/cm980448n
  46. S. J. Wang, C. F. Long, X. Y. Wang, Q. Li, and Z. N. Qi, 'Synthesis and properties of silicone rubber organomontmorillonite hybrid nanocomposites', J. Appl. Polym. Sci., 69, 1557-1561 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980822)69:8<1557::AID-APP10>3.0.CO;2-S
  47. Y. Yang, Z. -K. Zhu, J. Yin, X. -Y. Wang, and Z. -E. Qi, 'Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods', Polymer, 40, 4407-4414 (1999) https://doi.org/10.1016/S0032-3861(98)00675-2
  48. S. D. Burnside and E. P. Giannelis, 'Synthesis and properties of new poly( dimethylsiloxane) nano- composites', Chem. Mater., 7, 1597-1600
  49. J. W. Gilman, 'Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites', Applied Caly Science, 15, 31-49 (1999) https://doi.org/10.1016/S0169-1317(99)00019-8
  50. R. A. Vaia, G. Price, P. N. Ruth, H. Y. Nguyen, and J. Lichtenhan, 'Polymer/layered silicate nanocomposites as high performance ablative materials', Applied Clay Science, 15, 67-92 (1999) https://doi.org/10.1016/S0169-1317(99)00013-7
  51. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, 'Synthesis and properties of polyimide-clay hybrid', J. Polym. Sci. Part A: Polym. Chem., 31, 2493-2498 (1993) https://doi.org/10.1002/pola.1993.080311009
  52. K. Uano, A. Usuki, and A. Okada, 'Synthesis and properties of polyimide-clay hybrid films', J. Polym. Sci. Part A: Polym. Chem., 35, 2289-2294 (1997) https://doi.org/10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9
  53. A. A. Gusev and H. R. Lusti, 'Rational Design of nanocomposite for barrier applications', Advanced Materials, 13, 1641 (2001)
  54. S. S Ray, K. Yamada, M. Okamoto, A. Ogami, and K. Ueda, 'New polylactide/layered silicate nanocomposites. 3. High performance biodegradable materials', Chem. Mater., 15, 1456-1465 (2003) https://doi.org/10.1021/cm020953r
  55. L. Nielsen, 'Platelet particles enhance barrier of polymers by forming tortuous path', J. Macromol. Sci. Chem., A1(5), 929-942 (1967)
  56. R. Xu, E. Manias, A. J. Snyder, and J. Runt, 'New biomedical poly(urethane uera)-layered silicate nanocomposites', Macromolecules, 34, 37-339 (2001)
  57. R. K. Bharadwaj, 'Modeling the barrier properties of polymer-layered silicate nanocomposites', Macromolecules., 34, 1989-1992 (2001)
  58. R. A. Vaia, S. Vasudevan, W. Krawiec, L. G. Scanlon, and E. P. Giannelis, 'New polymer electrolyte nanocomposites: melt intercalation of poly (etylene oxide) in mica-type silicates', Adv. Mater., 7, 154-156 (1995) https://doi.org/10.1002/adma.19950070210
  59. J. C. Hutchison, R. Bissessur, and D. F. Shiver, 'Conductivity anisotropy of polyphosphazene-montmorillonite composite electrolytes', Chem. Mater., 8, 1597-1599 (1996) https://doi.org/10.1021/cm960039w
  60. M. Alexandre, G. Beyer, C. Henrist, R. Cloots, A. Rulmont, and P. Dubois, in preparation