• Title/Summary/Keyword: Flame Propagation Rate

검색결과 92건 처리시간 0.025초

반복점화장치 사용시 정적연소실내 메탄-수소 희박혼합기의 연소특성 연구(II) (A Study on Combustion Characteristics of the Methane-Hydrogen Lean Mixture by Using Multiple Spark Capacity Discharge in a CVCC (II))

  • 김봉석
    • 에너지공학
    • /
    • 제13권4호
    • /
    • pp.311-318
    • /
    • 2004
  • 본 연구에서는 정적연소실을 이용하여 차량용 대체연료로써 메란 및 수소첨가 메탄의 연소특성을 수소첨가율, 점화위치 및 점화방법에 따라 고찰하였다. 그 결과, 중심점화이고 수소를 첨가하지 많은 순수 메탄의 화염전파과정은 타원형으로 전파하나 수소첨가율이 증가함에 따라 화염면상에 매우 규칙적인 세포구조를 가진 불안정한 타원형화염으로 천이되었고 연소속도도 증가하였다. 또한, 벽면 및 0.5R 점화이고 수소를 첨가하지 않은 순수 메탄의 화염전파과정은 불안정한 타원형으로 전파하고 있었지만, 수소첨가율이 증가함에 따라 연소중기에 불안정한 타원형에서 평면형으로 천이 됐다가 연소말기에는 화염면 선단이 움푹 패인 매우 불규칙한 세포구조를 갖는 패기형으로 변화되었으며 연소속도도 증가하였다 한편, 세 가지 점화위치 모두에 있어서 MSCDI와 CDI사용에 따른 화염전파형태는 외견상 큰 차이는 없었지만, 동일시간에 MSCDI장치의 화염면적은 CDI의 화염면적보다 약간 더 크게 나타났다.

분진폭발의 입자거동을 고려한 화염전파속도의 예측 (Prediction of Flame Propagation Velocity based on the Behavior of Dust Particles)

  • 한우섭;한인수;최이락
    • Korean Chemical Engineering Research
    • /
    • 제47권6호
    • /
    • pp.705-709
    • /
    • 2009
  • 본 연구에서는 석송자 분진입자의 거동에 관한 실험적 연구결과를 바탕으로 한 분진화염 전파모델을 제시하였다. 화염전파속도는 분진농도와 함께 증가하여 석송자의 화학양론농도보다 높은 $170g/m^3$에서 최대로 나타났으며 $500g/m^3$까지 완만하게 감소 경향을 나타낸다. 농도 $47{\sim}200g/m^3$에 있어서, 분진입자속도는 화염전파속도에 비례하여 증가한다. 또한, 연소속도와 입자속도의 합이 화염전파속도에 근사한 값을 나타내고 있어, 분진농도에 따른 화염전파속도를 계산에 의해 추정이 가능하였으며, 입자의 거동이 분진의 화염전파속도를 이해하는데 유용하다는 것을 알 수 있었다.

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF

물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정 (Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation)

  • 권순익
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

분위기 가스 변화에 의한 폴리스틸렌 구의 미소중력 연소특성 (Microgravity Combustion Characteristics of Polystyrene Spheres with Various Ambient Gases)

  • 최병철;이토켄이치;후지타오사무
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1509-1517
    • /
    • 2001
  • An experimental and numerical analysis were conducted to investigate the transient temperature distribution and flame propagation characteristics over an inline polystyrene spheres under microgravity. From the experimental, a self-ignition temperature of polystyrene bead was 872 K under gravity. Flame spread rates were 4.7-5.1 mm/s with ambient gas N$_2$and 2.3-2.5 mm/s with ambient gas CO$_2$, respectively. Flame radius diameters were 17 mm with ambient gas N$_2$and 9.6 mm with ambient gas CO$_2$, respectively. These results suggest that the flame propagation speed could be affected in the Diesel engine and the boiler combustor by EGR. In terms of the flame spread rate and the transient temperature profile, numerical results have the qualitative agreement with the experiment.

메탄-수소-공기 예혼합기의 연소특성(II) (Combustion Characteristics of Methane-Hydrogen-Air Premixture(II))

  • 김봉석;이영재
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

일차원 액적 배열의 화염 퍼짐에 있어서 연료의 혼합 효과에 관한 연구 (A Study on Blend Effect of Fuel in Flame Spread Along An One-Dimensional Droplet Array)

  • 박정;소림수소;신강숭
    • 한국연소학회지
    • /
    • 제3권2호
    • /
    • pp.1-11
    • /
    • 1998
  • Experimental investigation on flame spread of blended fuel droplet arrays has been conducted for droplet diameters of 1.0mm and 0.75mm using high-speed chemiluminescence images of OH radical. The flame spread rate is measured with blended fuel composition, droplet diameter, and droplet spacing. Flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing, above which flame does not spread, and a droplet spacing of maximum flame spread, which is closely related to flame diameter. It is seen that flame spread rate is mainly dependent upon the relative position of flame zone within a droplet spacing. In case of large droplet, the increase of % volume of Heptane induces the shift of limit droplet spacing to a larger spacing since volatile Heptane plays a role of an enhancer of flame spread rate. In case of small droplet, the increase of % volume of Heptane leads to the shift of limit droplet spacing to a smaller droplet spacing. This is so because of the delayed chemical reaction time by the rapid increase of mass flux of fuel vapor for small droplet.

  • PDF

대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성 (Edge Flame propagation for Twin Premixed Counterflow Slot Burner)

  • 데이비드 클레이튼;차민석;폴 로니
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.60-64
    • /
    • 2006
  • Propagation rates ($U_{edge}$) of various premixed, twin edge-flames were measured as a function of global strain rate ($\sigma$), mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge}$) and retreating (negative $U_{edge}$) edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of $\sigma$ on $U_{edge}$. Both low-$\sigma$ and high-$\sigma$ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low ($CH_4/O_2/CO_2$) and high ($C_3H_8$/air) Lewis number cases, propagation rates clearly show a strong dependence on Le.

  • PDF

대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성 (Edge Flame propagation for Twin Premixed Counterflow Slot Burner)

  • 데이비드클레이튼;차민석;폴로니
    • 한국연소학회지
    • /
    • 제14권1호
    • /
    • pp.25-30
    • /
    • 2009
  • Propagation rates ($U_{edge}$) of various premixed, twin edge-flames were measured as a function of global strain rate ($\sigma$), mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge}$) and retreating (negative $U_{edge}$) edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of $\sigma$ on $U_{edge}$. Both low-$\sigma$ and high-$\sigma$ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low ($CH_4/O_2/CO_2$) and high ($C_{3}H_{8}$/air) Lewis number cases, propagation rates clearly show a strong dependence on Le.

  • PDF

체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구 (The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect)

  • 정의헌;권세진
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.