• Title/Summary/Keyword: Flame Height

Search Result 173, Processing Time 0.022 seconds

Study of Characteristics of Self-Excitation in Lifted Laminar Free-Jet Propane Flames Diluted with Nitrogen (질소 희석된 프로판 자유제트 층류부상화염에 있어서 화염 자기진동 특성에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The characteristics of lifted laminar propane flames diluted with nitrogen have been investigated experimentally to elucidate self-excitation and the effects of flame curvature. Flame oscillation modes are classified as follows: oscillation induced by heat loss, a combination of oscillations induced by heat loss and buoyancy, and a combination of the oscillations induced by heat loss and diffusive thermal instability. It is shown that the oscillation induced only by heat loss is not relevant to the diffusive thermal instability and hydrodynamic instability caused by buoyancy; this oscillation is observed under all lift-off flame conditions irrespective of the fuel Lewis number. These experimental evidences are displayed through the analysis of the power spectrum for the temporal variation of lift-off height. The possible mechanism of the oscillation induced by heat loss is also discussed.

Study on Mathematical Method of Radiation Heat Transfer for Estimating Width of Firebreak in Surface Fire (복사열전달 수치해석을 통한 지표화 방화선 구축 폭 산정에 관한 연구)

  • Kim, Dong-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.59-64
    • /
    • 2010
  • Building a firebreak against surface forest fire is a typical indirect suppression method that stops spread of flame by removing surface fuel, such as fallen leaves and bushes. In the sense of fire dynamic, building a firebreak is to set a section which will block thermal energy from igniting on virgin fuel. This study suggests and evaluates a calculation method for width of firebreak against surface fire for variant wind and slope conditions by applying the Point Source Model (PSM) to fallen leaves of Pinus densiflora. Width of firebreak was measured based on the distance the threshold radiant heat igniting Pinus densiflora fallen leaves at the heat flux of $4.9\;kW/m^2$ reaches. As a result, at the wind velocity of 0~5 m/s and on the slope of $0{\sim}50^{\circ}$, the appropriate width of a firebreak was 0.35~0.65 m for the mean flame height and 0.75~1.05 m for the maximum flame height. Accordingly, considering the factor of safety, the most appropriate width of a firebreak is 1.05 m based on the maximum flame height. Additional comparative analyses through experiments and field surveys are deemed necessary to determine appropriate widths of firebreak for different types of surface fuel.

A Numerical Study of 1-D Surface Flame Spread Model - Based on a Flatland Conditions - (산불 지표화의 1차원 화염전파 모델의 수치해석 연구 - 평지조건 기반에서 -)

  • Kim, Dong-Hyun;Tanaka, Takeyoshi;Himoto, Keisuke;Lee, Myung-Bo;Kim, Kwang-Il
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-D surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-D surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals a prediction of an approximately 10% upward tendency under wind velocity conditions of 1 to 2m/s, and of an approximately 20% downward tendency under those of 3m/s.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Design of Down Draft Kiln for Gas Firing II. Behavior of Flame (도염식 가스 가마의 설계 -II. 화염의 거동)

  • Lee, Ki-Gang;Kim, Hwan;Lim, Eung-Keuk
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 1987
  • An experimental study of the characteristics and the behavior of flames, and the aerodynamic flow pattern was carried out in the present work on a down draft kiln for gas firing. The aim of this work is to establish a behavior of flames and to know the extent to which the flow pattern is affected by the height of baffle plate. The measurements of temperature, concentrations of fuelgas, and kiln pressure were conducted at different temperature in kiln, and at different height of baffle plate. From the obtained results, it was found that the characteristics of thestagnation zone are greatly affected when changing over the height of baffle plate, and the best condition of that was 115m/m.

  • PDF

Breeding of a scarlet single flowering freesia 'Dancing Flame' with early flowering and high yielding for cut flower (조생 다화성 절화용 프리지아 '댄싱플레임' 육성)

  • Cho, Hae Ryong;Rhee, Ju Hee;Lim, Jin Hee;Kim, Mi Sun;Park, Sang Kun;Shin, Hak Ki;Joung, Hyang Young;Choi, Youn Jung
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.305-309
    • /
    • 2013
  • A freesia (Freesia hybrida Hort.) 'Dancing Flame' was developed for the cut flower in the National Institute of Horticultural Herbal Science in 2007. This hybrid was selected from a crossing between a seedling 'Vulcano' and 'Sailor', which is scarlet double flowering and purple single flowering, respectively, and 'Figaro' which is bright red color and semi-double flowering, in 2000. Morphological characteristics of the selected hybrid were investigated for 3 years from 2005 to 2007, and then it was named 'Dancing Flame'. 'Dancing Flame' had red color (RHS R44B) and single flower with yellow center color (RHS Y9A). The growth of the plant was vigorous and the average height was 93.3 cm. The average flower width was 60 mm, number of floret per stalk was 14.3, and stalk was 13.2 cm length. The average yield, 7.8 cuttings per plant, was 2.5 stems per plant more than the control cultivar. The average days to first flowering of 'Dancing Flame', 133 days, was approximately 5 days earlier than the control cultivar. And its average yield, 7.1 cormlet per plant, was also 2.5times more than the control cultivar.

Effects of Fuel Nozzle Diameter in the Behavior of Laminar Lifted Flame (노즐 직경 변화가 층류부상화염 거동에 미치는 영향)

  • Kim, Tae-Kwon;Um, Hyen-Soo;Kim, Kyung-Ho;Ha, Ji-Soo;Park, Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 2008
  • Experimental study was conducted to clarify the importance of buoyancy effects in laminar lifted flames which have been well understood by cold jet similarity theory. To evaluate buoyancy effects, lifted flame behaviors were systematically observed in methane and propane lifted flames diluted with He as changing the fuel nozzle diameter from 0.1 to 6 mm. Important physical parameters such as fuel strength, flame stretch and flame curvature, which were derived through simple physical scaling laws, were estimated. It is experimentally proven that buoyancy effects are important in relatively large fuel nozzle diameter and large fuel dilution with He. The results of Chen et al., which displayed the existence of stably lifted flames for 0.5

  • PDF

Effect of AC Electric Field on Decreasing Liftoff Height in Laminar Lifted Jet Flames (층류 부상 화염의 화염부상 높이 감소 구간에서 교류 전기장이 인가된 화염에 관한 영향)

  • Seo, B.H.;Van, K.H.;Kim, G.T.;Park, J.;Keel, S.I.;Kim, S.W.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.17-22
    • /
    • 2017
  • An experimental study has been conducted to elucidate the effect of AC electric field on behaviors of laminar lifted flame in nitrogen-diluted methane coflow-jets. Our concerns are focued on the regime to show a decrease in liftoff height, $H_L$ with increasing nozzle exit velocity, $U_O$ (hereafter, $decreasing-H_L$). The $H_L$ with $U_O$ near flame extinction were measured by varying the applied AC voltage, $V_{AC}$ and frequency, $f_{AC}$ in a single electrode configuration. The behavior of $H_L$ with a functional dependency of $V_{AC}$ and $f_{AC}$ was categorized into two regime : (I) $H_L$ decreased for nozzle diameter, D = 1.0 mm, and (II) $H_L$ increased in the increase of $f_{AC}$ for a fixed $V_{AC}$ in a D = 4.0, 8.4 mm. The lifted flames in $decreasing-H_L$ region was unstable in high voltage regimes while the $H_L$ showed a decreasing tendency with $U_O$ except them. Such behaviors in $H_L$ were also characterized by functional dependencies of related physical parameters such as $V_{AC}$, $f_{AC}$, $U_O$, fuel mole fraction ($X_{F.O}$) and D.

Combustion and Spray Characteristics of Jet in Crossflow in High-Velocity and High-Temperature Crossflow Conditions (고온고속기류 중에 수직 분사되는 액체제트의 연소 및 분무특성)

  • Yoon, Hyun Jin;Ku, Kun Woo;Kim, Jun Hee;Hong, Jung Goo;Park, Cheol Woo;Lee, Choong Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • A jet in a crossflow (JICF) has been extensively studied because of its wide applications in technological systems, including fuel injection into a ram-combustor. However, in the case of insufficient mixing performance of the liquid jet into the crossflow, the flame in a ram-combustor is unstable. In this study, the nonuniform flame and combustion instabilities due to lack of mixing performance were experimentally investigated. By performing correlations to predict the penetration height and break-up point, the spray and mixing characteristics of JICF have been studied. In particular, the improved correlations of penetration height are proposed in two distinctive domains depending on the X/d location of the crossflow.

A Experimental Study on Gas Explosions by Variations L/D ratio in a Partially Confined Geometry (부분 밀폐 공간에서의 L/D비 변화에 따른 가스 폭발의 실험적 연구)

  • Lee, Young-Soon;Park, Dal-Jae;Ahan, Jeong-Jin;Ahan, Sung-Joon;Oh, Shin-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.29-34
    • /
    • 2006
  • It is revealed that these are correlated with the height of chamber deciding the turbulence extent. In the first experiment, It was examined about the effects of different multiple obstacles such as circular, triangular and square things with the rig that the dimension of original experimental rig was $700{\times}700{\times}200mm{\wedge}3$. Then the heights of chamber were increased from 200 to 1000mm. The dimensions of each obstacle were $70{\times}700{\times}{\wedge}2$ and rectangular vent area were $210{\times}700{\times}{\wedge}2$. In the second one, we performed to see the effects of locations of different multiple obstacles in 200, 500 and 800mm height from the bottom. The results are : The multiple triangular obstacles caused the highest overpressure while the lowest one was the multiple circle bars. Then, the triangular bars caused the highest flame acceleration while the circular obstacles was lowest too. The results showed that the critical height was 800mm due to the formation of turbulence. And the lesser $Av/V^{2/3}$ were small, the more pressure and pressure acceleration rate were increased.