A Numerical Study of 1-D Surface Flame Spread Model - Based on a Flatland Conditions -

산불 지표화의 1차원 화염전파 모델의 수치해석 연구 - 평지조건 기반에서 -

  • Published : 2008.06.30

Abstract

The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-D surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-D surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals a prediction of an approximately 10% upward tendency under wind velocity conditions of 1 to 2m/s, and of an approximately 20% downward tendency under those of 3m/s.

산불의 확산특성은 일반적으로 가연물의 특성, 지형, 바람조건과 같은 기상 상태등과 관련이 있다. 산불의 발달과정에 있어 수치해석을 통한 확산예측 모델은 열전달 과정에 기본을 둔 열에너지 전달에 대한 해석이 가장 일반적인 방법론이다. 산불의 발생시 열에너지의 전파속도를 해석하는 것은 화염의 생성과 열전달, 그리고 소멸에 이르는 전 과정에 대한 물리적, 화학적 해석을 통해 화염의 이동에 따른 전파속도로 추정할 수 있다. 본 논문에서는 고체연소물질의 표면화염전파에 대한 수치해석을 통해 1차원 지표화 확산모델식을 제시하였다. 1차원 확산모델식은 평지상태에서 풍속조건에 따른 화염의 전파속도 산정식으로써 지표연료의 화염유지시간, 화염의 높이, 화염의 온도, 지표연료의 착화온도 등에 대한 실험 및 이론식을 적용하였다. 실험값 및 다른 모델식과의 ROS 비교 결과, 풍속 3 m/s 이하의 조건에서는 지수함수식의 증가곡선을 나타내는 경향을 보였다. 침엽수종인 소나무 낙엽에 대한 수치해석값과 실험값을 비교한 결과, 풍속 1-2m/s 조건에서는 확산속도가 약 10% 상향예측이 되었고 풍속 3m/s 조건에서는 약 20% 하향예측 되었다. 따라서 앞으로 지표화 확산 예측을 위해 본 연구결과에서 얻어진 화염확산 알고리즘을 이용한 초기 산불확산 예측 적용이 가능할 것으로 사료된다.

Keywords

References

  1. 김동현, 김태구, 김광일, "산림화재 종합위험등급화에 관한 연구", 한국화재소방학회논문지, Vol.15, No.3 pp.49-54(2001)
  2. 김동현, 이명보, 강영호, 이시영, "지표물질 착화성 실 험을 통한 발화위험성 분석", 2006 한국방재학회 학 술발표대회 논문집, pp.379-384(2006)
  3. D.H. Kim, "Forest Fire Risk Assessment through Analyzing Ignition Characteristics of Forest Fuel Bed", V International Conference on Forest Fire Research, pp.30-31(2006)
  4. 박형주, 김응식, 김장환, 김동현, "복사열을 이용한 소 나무와 굴참나무 낙엽의 연소특성 분석", 한국화재소방학회논문지, Vol.21. No.3, pp.33-41(2007)
  5. 이명보, 김동현 외, 소방방재청 자연재해기술개발사 업 "산불피해저감을 위한 진화기술 개발", 연구보고 서, p.132(2007)
  6. 김장환, 김응식, 김동현, 이명보, "소나무 및 굴참나 무 낙엽의 연소특성 분석", 산림과학논문집, Vol.69, pp.98-103(2006)
  7. 이병두, 정주상, 이명보, 김동현, "산불확산예측모델 의 개발", 한국화재소방학회 2006년도 춘계학술논문 발표회 논문집, pp.231-235(2006)
  8. 박병현, 박덕신, 조영민, 박은영, 이철규, "콘칼로리미 터를 이용한 바이오매스의 연소특성에 관한 연구(I) -단풍잎, 은행잎, 덤불, 솔잎에 대해서-", 한국대기환경학회지, Vol.21, No.4, pp.459-469(2005)
  9. K. Himoto and T. Tanaka, "A Burning Model for Charring Materials and Its Application to the Compartment Fire Development", Fire Science and Technorogy, Vol.23, No.3, pp.170-190(2004) https://doi.org/10.3210/fst.23.170
  10. F.A. Albini, "A Physical Model for Fire Spread in Brush. In "11th Symp.(Int.) on Combust", The Combustion Institute, Pittsburgh, pp.553-560(1967)
  11. F.A. Albini, "Estimating Wildfire Behavior and Effects", Technical Report USDA For. Serv. Gen. Tech. Rep. INT-30, USDA Forest Service(1976)
  12. F.A. Albini, "A Model for the Wind-Blown Flame from a Line Fire", Combust. Flame 43, p.155(1981) https://doi.org/10.1016/0010-2180(81)90014-6
  13. F.A. Williams, "Mechanisms of Fire Spread(Invited Review)", in 16th Symposium(Int.) on Combustion, Combustion Institute, Pittsburgh, PA, pp.1281-1294 (1976)
  14. H.E. Anderson, "Sundance Fire: An Analysis of Fire Phenomena", Res. Pap. INT-56, USDA Forest Service, Ogden(1968)
  15. H.E. Anderson, "Heat Transfer and Fire Spread", Res. Pap. INT-69, USDA Forest Service, Ogden (1969)
  16. R.C. Rothermel, "A Mathematical Model for Predicting Fire Spread in Wildland Fuel", Res. Pap. INT-115, USDA Forest Service, Ogden(1972)
  17. K.G. Hirsch, "Canadian Forest Fire Behavior Prediction (FBP) System: User's Guide", Technical Report Special Report 7, Canadian Forest Service, Northwest Region, Northern Forestry Centre p.122 (1996)
  18. M. Nelson and C.W. Adkins, "Flame Characteristics of Wind-Driven Surface Fires", Canadian J. Forest Res., Vol.16, p.1293(1986) https://doi.org/10.1139/x86-229
  19. G.M. Byram, "Combustion of Forest Fuels, Forest Fire: Control and Use", edited by K.P. Davis (McGraw-Hill, New York), p.61(1959)
  20. P.H. Thomas, "The Size of Flames from Natural Fires", in Proceedings of the 9th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, pp.844-859(1963)
  21. A. Putnam, "A Model Study of Wind-Blown Free- Burning Fires", in Proceedings of the 10th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA), pp.1039-1046(1965)
  22. B. Fang, "An Investigation of the Effect of Controlled Wind on the Rate of Fire Spread", Ph.D. Dissertation, University of New-Brunswick(1969)
  23. I.R. Nobel, G.A.V. Bary and A.M. Gill, "McArthur's Fire-Danger Meters Expressed as Equations. Australian J. of Ecology", Vol.5, pp.201-203(1980) https://doi.org/10.1111/j.1442-9993.1980.tb01243.x
  24. T. Beer, "The Interaction of Wind and Fire", Boundary-Layer Meteorology, Vol.54, pp.287-308 (1991) https://doi.org/10.1007/BF00183958
  25. F. Tamanini, "Comb. and Flame", Vol.60, p.219 (1985) https://doi.org/10.1016/0010-2180(85)90027-6
  26. M. William, J. Charney, M.A. Jenkins, P. Cheney and J. Gould, "Numerical Simulations of Grassland Fire Behavior from the LANL-FIRETEC and NISTWFDS Models", EastFIRE Conference(2005)
  27. N.P. Cheney and J.S. Gould, "Fire Growth in Grassland Fuels", International Journal of Wildland Fire, Vol.5, No.4, pp.237-247(1995) https://doi.org/10.1071/WF9950237
  28. N.P. Cheney, J.S. Gould and W.R. Catchpole, "Prediction of Fire Spread in Grasslands", International Journal of Wildland Fire", Vol.8, No.1, pp.1- 13(1998) https://doi.org/10.1071/WF9980001
  29. B. McCaffrey, The SFPE Handbook of Fire Protection Engineering, 2nd ed., Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA(1995)
  30. G. Heskestad, Fire Safety Science-Proceedings of the Fifth International Symposium, International Association for Fire Safety Science(1998)
  31. NFPA & SFPE, "The SFPE Handbook of Fire Protection Engineering", 3rd edition, pp.247-251 (2002)