• Title/Summary/Keyword: Fixture

Search Result 725, Processing Time 0.031 seconds

Design and Manufaturing of Magnetizing Fixture for Multipolar Magnet (다극 착자용 요크 설계 제작)

  • Kim, Chul-Ho;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.319-321
    • /
    • 1997
  • This paper deals with multipolar magnetizing process which can exert a considerable influence on the final performance of permanent magnet machine. In combination with impulse discharge magnetizer, the analysis and design of magnetizing fixture using finite element method is required to obtain the accurate characteristics of permanent magnet for small-size step motor. Simulated result of flux density shows good agreement with measured one.

  • PDF

Material Characteristics of Multipolar Magnetizing Fixtures (다극 착자용 요크의 재질에 따른 특성해석)

  • Kim, Chul-Ho;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.334-336
    • /
    • 1998
  • This paper deals with the problem of the magnetizing yoke fixture. The experimental test has been performed using the yoke fixture made of bakelite as well as ferromagnetic. The magnetizing current is the most essential criterial factor for delivering the impulse energy to the magnetized material, i.e ferrite core. The yoke of nonferromagnetic has shown its better performance in experimental results as well as in the finite element analysis.

  • PDF

Abutment Sinking and Fitness of Conical Internal Connection Implant System according to Loading Condition (하중조건에 따른 원추형 내측연결 임플랜트 시스템에서 지대주 침하 및 적합에 관한 연구)

  • Lee, Hal-La;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • The purpose of this study was to evaluate internal conical abutment sinking and fitness according to the loading condition. In this study, Alloden implant fixture and two abutment(conventional, FDI) systems were used. Each abutment was applied 1 time of finger force, 3 times of malleting force, 5 times of 20kg and extra several times to the fixture until the amount of abutment singking showed no change. Then, the length of abutment to fixture which was binding lightly with no pressure state was measured by Vernier caliper. After loading application, the length was remeasured and the amount of sinking was calculated. The implant was buried in unsaturated polyester (Epovia, Cray Valley Inc. Korea) for making a comparison between the change of length and fitness of abutment-fixture connection part. Then All samples were cross-sectioned with high speed precision cut-off(accutom-5, Struers, Denmark). Finally, The result were observed and analyzed using FE-SEM (field emission scanning electron microscopy).

Effect of intra-crown cantilever on mechanical strength of internal conical joint type implant (치관 내 캔틸레버 양에 따른 내측 연결 형태 임플란트의 기계적 강도에 대한 연구)

  • Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Jeon, Young-Chan;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.360-367
    • /
    • 2015
  • Purpose : The purpose of this study was to evaluate the effect of amount of cantilever in intra-crown according to implant fixture position on mechanical strength of internal conical joint type implant. Materials and Methods : Internal conical joint type implant fixture, abutment screw, abutment was connected and gold alloy prostheses were fabricated and cemented on abutment. For fatigue fracture test, the specimens were loaded to the 350 N, 2,000,000 cycle on 3, 4, 5, and 6 mm off-center of gold alloy prostheses. The fracture pattern of implant component was observed. Results : No fatigue fracture found on 3 and 4 mm group. But initial crack pattern found on 3 specimens of 4 mm group. Fatigue fracture found on all specimens of 5 mm group. But complete fracture was not observed. One specimen of 6 mm group fracture completely. Implant fixture fracture wax not observed. Conclusion : The mechanical failure of implant prostheses increased with the loading area farther from center of implant fixture. To reduce mechanical problem of internal joint type implant, surgical and prosthetic consideration is needed.

THE EFFECTS OF FABRICATION OF GOLD CYLINDER AND ABUTMENT ON THE FITNESS AND PRELOAD OF THE PROSTHESIS (지대주와 금속 실린더의 종류가 보철물의 적합도 및 preload에 미치는 영향)

  • Ha Jum-Im;Jeong Hoe-Yeol;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.451-465
    • /
    • 2003
  • Statement of problem : Recently various implant components such as premachined gold cylinder, plastic cylinder gold UCLA abutment and plastic abutment were developed and used clinically without clinical investigation. Purpose : The purpose of this study was to evaluate the effects of fabrication of gold cylinder on the fitness and preload of the standard abutment and also the effects of fabrication of UCLA gold abutment on the fitness and stress transfer around the implant fixture. Material and method : Three kinds of gold cylinders such as, as-received gold cylinder (Nobel Biocare, Sweden), gold cylinder after casting, and plastic cylinder after casting with type IV gold alloy were tested over the top of the standard abutment. At the same time, three types of abutments such as, gold UCLA abutment before and after casting, and plastic abutment after casting were tested. The cylinder and abutment was secured over the fixture with conventional pre-load values using an electronic torque controller (Nobel Biocare, Sweden). The fitness of the abutment on the fixture and gold cylinder over the standard abutment were measured using the microhardness tester (MXT 70, Matsuzawa, Japan). Preload and the strain values were recorded using the strain balance unit (SB-10, Measurement group, Raleigh, USA) and strain indicator (P-3500, Measurement group, Raleigh, USA) systems. Results and conclusion : 1. Significant differences were found in the fit between the gold cylinder and plastic cylinder. 2 There were significant differences between the preload of the gold cylinder and that of the plastic cylinder. 3. Significant differences were found in the fit between the gold UCLA abutment and plastic UCLA abutment. 4. There were no significant differences in the stress generated on the supporting structure of the fixture among different cylinder and abutment groups.

Effect of bone quality and implant surgical technique on implant stability quotient (ISQ) value

  • Yoon, Hong-Gi;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Su-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • PURPOSE. This study investigated the influence of bone quality and surgical technique on the implant stability quotient (ISQ) value. In addition, the influence of interfacial bone quality, directly surrounding the implant fixture, on the resonance frequency of the structure was also evaluated by the finite element analysis. MATERIALS AND METHODS. Two different types of bone (type 1 and type 2) were extracted and trimmed from pig rib bone. In each type of bone, the same implants were installed in three different ways: (1) Compaction, (2) Self-tapping, and (3) Tapping. The ISQ value was measured and analyzed to evaluate the influence of bone quality and surgical technique on the implant primary stability. For finite element analysis, a three dimensional implant fixture-bone structure was designed and the fundamental resonance frequency of the structure was measured with three different density of interfacial bone surrounding the implant fixture. RESULTS. In each group, the ISQ values were higher in type 1 bone than those in type 2 bone. Among three different insertion methods, the Tapping group showed the lowest ISQ value in both type 1 and type 2 bones. In both bone types, the Compaction groups showed slightly higher mean ISQ values than the Self-tapping groups, but the differences were not statistically significant. Increased interfacial bone density raised the resonance frequency value in the finite element analysis. CONCLUSION. Both bone quality and surgical technique have influence on the implant primary stability, and resonance frequency has a positive relation with the density of implant fixture-surrounding bone.

Development of functional lighting fixture and Experiment of to the Biological effects (기능성 반사판 조명기구 개발 및 효능 실험)

  • Kim, Chang-Hwan;Kim, Hyeon-Soo;Chee, Chol-Kon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.203-208
    • /
    • 2004
  • We are living now under the bad air pollition contained the many plus(+)ion produed by the exhaust gases from automobil and Industrial plant. To be refreshe those air pollution. We developed the funtional lighting fixture which emit the lighting, negative(-)ion and Infraredray. The negative(-)ion and Infraredray refresh the air pollition and will arise nature healing power lot the human body and activate the body cell, and makes the good blood circulation and then we had the experiment to the Biological effect by the funtional lighting fixture.

  • PDF

A finite element stress analysis on the supporting bone and abutment screw by tightening torque of dental implant abutment screw (치과용 임플란트 지대주나사의 조임체결력에 따른 지지골과 지대주나사의 유한요소법 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Purpose: A study analysed the stress distribution of abutment screw and supporting bone of fixture by the tightening torque force of the abutment screw within clinical treatment situation for the stability of the dental implant prosthesis. Methods: The finite element analysis was targeted to the mandibular molar crown model, and the implant was internal type 4.0 mm diameter, 10.0 mm length fixture and abutment screw and supporting bone. The occlusal surface was modeled in 4 cusps and loaded 100 N to the buccal cusps. The connection between the abutment and the fixture was achieved by combining three abutment tightening torque forces of 20, 25, and 30 Ncm. Results: The results showed that the maximum stress value of the supporting bone was found in the buccal cortical bone region of the fixture in all models. The von Mises stress value of each model showed 184.5 MPa at the 20 Ncm model, 195.3 MPa in the 25 Ncm model, and 216.5 MPa in the 30 Ncm model. The contact stress between the abutment and the abutment screw showed the stress value in the 20 Ncm model was 201.2 MPa, and the 245.5 MPa in the 25 Ncm model and 314.0 MPa in the 30 Ncm model. Conclusion: The increase of tightening force within the clinical range of the abutment screw of the implant dental prosthesis was found to have no problem with the stability of the supporting bone and the abutment screw.

A Study on the Optimum Evaluation Method for Tensile NOL Ring Specimen Manufactured by Filament Winding Process (Filament Winding에 의해 제조된 복합재료 NOL Ring시험편의 최적 인장강도 평가법에 관한 연구)

  • 김윤해;권술철;임철문
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2001
  • Filament Winding Process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. It is well established and versatile method for storage tanks and pipes for the chemical and other industries. In this study, tensile strength of a filament wound ring specimens were evaluated by a split disk test fixture and a dress disk test fixture. The results obtained from experiments were compared with the theoretical values from the rule of mixtures. The purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures. The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than those tested by the split disk test because of higher stress concentration in edges of a split disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

A COMPARISON OF ACCURACY BETWEEN FIXTURE IMPRESSION AND ABUTMENT IMPRESSION FOR DENTAL IMPLANTS (치과 임플랜트용 고정체 인상법과 지대원주 인상법간의 정확성 비교)

  • Choi, Hyun-Sik;Yim, Soon-Ho;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.662-673
    • /
    • 1997
  • The purpose of this study was to compare the accuracy between future impression and abutment impression using strain gauges. The master model used in this study was a partially edentulous mandibular metal cast with two fixture analogs on both sides. On the left, two future analogs were parallel, whereas right side, posterior future analog exhibiting a 15-degree lingual inclination. From master cast, 10 impressions were made for each of the three impression methods. The master frameworks was fabricated on the master model, and two-element strain gauge was attached to a master framework. The master framework was seated on each cast, and gold screws were tightened to 10 Ncm using a torque controller AI-1600 strain measurement system was used for strain measuring. Impression methods studied were : Group 1:abutment impression Group 2:fixture impression Group 3:combined impression (anterior:fixture impression, posterior:abutment impression) The results were as followed. 1. The strain values on X-axis and Y-axis according to the three impression methods showed no significant difference. 2. The strain values on parallel and angulated groups according to the three impression methods showed no significant difference. 3. The parallel group exhibited significantly higher accuracy in adaptation than angulated group for all experimental groups (p<0.05). In conclusion, it is considered that accuracy of implant prostheses is more affected by implant angulation than impression methods.

  • PDF