• Title/Summary/Keyword: Fixed point theorems

Search Result 436, Processing Time 0.027 seconds

COMMON FIXED POINT THEOREMS FOR TWO SELF MAPS SATISFYING ξ-WEAKLY EXPANSIVE MAPPINGS IN DISLOCATED METRIC SPACE

  • Kim, Jong Kyu;Kumar, Manoj;Preeti, Preeti;Poonam, Poonam;Lim, Won Hee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.271-287
    • /
    • 2022
  • In this article, we shall prove a common fixed point theorem for two weakly compatible self-maps 𝒫 and 𝔔 on a dislocated metric space (M, d*) satisfying the following ξ-weakly expansive condition: d*(𝒫c, 𝒫d) ≥ d* (𝔔c, 𝔔d) + ξ(∧(𝔔c, 𝔔d)), ∀ c, d ∈ M, where $${\wedge}(Qc,\;Qd)=max\{d^*(Qc,\;Qd),\;d^*(Qc,\;\mathcal{P}c),\;d^*(Qd,\;\mathcal{P}d),\;\frac{d^*(Qc,\;\mathcal{P}c){\cdot}d^*(Qd,\;\mathcal{P}d)}{1+d^*(Qc,\;Qd)},\;\frac{d^*(Qc,\;\mathcal{P}c){\cdot}d^*(Qd,\;\mathcal{P}d)}{1+d^*(\mathcal{P}c,\;\mathcal{P}d)}\}$$. Also, we have proved common fixed point theorems for the above mentioned weakly compatible self-maps along with E.A. property and (CLR) property. An illustrative example is also provided to support our results.

CONTROL FUNCTION BASED COUPLED AND COMMON COUPLED FIXED POINT THEOREMS IN PARTIAL METRIC SPACES

  • H. K. Nashine;G. S. Saluja;G. V. V. Jagannadha Rao;W. H. Lim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.559-580
    • /
    • 2024
  • In this paper, we aim to prove coupled and common coupled fixed point theorems for contractive type conditions in the context of partial metric spaces by means of a control function, and to provide some corollaries of the established results. This paper presents a number of results that generalize and extend previous work in the field. In order to better illustrate the process, we provide examples.

SOME FIXED POINTTHEOREMS ON H-SPACES(I)

  • Lee, Byung-Soo;Lee, Sang-Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.325-330
    • /
    • 1995
  • In this paper we obtain some fixed point theorems on H-spaces by using H-KKM theorems.

  • PDF

POSITIVE SOLUTIONS FOR NONLINEAR m-POINT BVP WITH SIGN CHANGING NONLINEARITY ON TIME SCALES

  • HAN, WEI;REN, DENGYUN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.551-563
    • /
    • 2017
  • In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $$u^{{\Delta}{\nabla}}(t)+a(t)f(t,u(t))=0,\;t{\in}(0,T),\;{\beta}u(0)-{\gamma}u^{\Delta}(0)=0,\;u(T)={\sum_{i=1}^{m-2}}\;a_iu({\xi}_i),\;m{\geq}3$$, where $a(t){\in}C_{ld}((0,T),\;[0,+{\infty}))$, $f{\in}C([0,T]{\times}[0,+{\infty}),\;(-{\infty},+{\infty}))$, the nonlinear term f is allowed to change sign. We obtain several existence theorems of positive solutions for the above boundary value problems. In particular, our criteria generalize and improve some known results [15] and the obtained conditions are different from related literature [14]. As an application, an example to demonstrate our results is given.

NOTES ON RANDOM FIXED POINT THEOREMS

  • Cho Y.J.;Khan M. Firdosh;Salahuddin Salahuddin
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.227-236
    • /
    • 2006
  • The purpose of this paper is to establish a random fixed point theorem for nonconvex valued random multivalued operators, which generalize known results in the literature. We also derive a random coincidence fixed point theorem in the noncompart setting.

  • PDF

COMMON FIXED POINTS FOR COMPATIBLE MAPPINGS OF TYPE(A) IN 2-METRIC SPACES

  • WANG, WEN-ZUO
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.91-97
    • /
    • 2000
  • In this paper we obtain a criterion for the existence of a common fixed point of a pair of mappings in 2-metric spaces. Our result generalizes a number of fixed point theorems given by Imdad, Khan and Khan [1], Kahn and Fisher [2], Kubiak [3], Rhoades [5], and Singh, Tiwari and Gupta [6].

  • PDF

ON THE STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

  • Chang, Shih-Sen;Zhao, Liang Cai;Wu, Ding Ping
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.13-23
    • /
    • 2009
  • Some strong convergence theorems of explicit iteration scheme for asymptotically nonexpansive semi-groups in Banach spaces are established. The results presented in this paper extend and improve some recent results in [T. Suzuki. On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131(2002)2133-2136; H. K. Xu. A strong convergence theorem for contraction semigroups in Banach spaces, Bull. Aust. Math. Soc. 72(2005)371-379; N. Shioji and W. Takahashi. Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica. 1(1999)57-66; T. Shimizu and W. Takahashi. Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211(1997)71-83; N. Shioji and W. Takahashi. Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. TMA, 34(1998)87-99; H. K. Xu. Approximations to fixed points of contraction semigroups in Hilbert space, Numer. Funct. Anal. Optim. 19(1998), 157-163.]

  • PDF