• Title/Summary/Keyword: Fixed model test

Search Result 450, Processing Time 0.035 seconds

Genetic parameters of milk and lactation curve traits of dairy cattle from research farms in Thailand

  • Pangmao, Santi;Thomson, Peter C.;Khatkar, Mehar S.
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1499-1511
    • /
    • 2022
  • Objective: This study was aimed to estimate the genetic parameters, including genetic and phenotypic correlations, of milk yield, lactation curve traits and milk composition of Thai dairy cattle from three government research farms. Methods: The data of 25,789 test-day milk yield and milk composition records of 1,468 cattle from lactation 1 to 3 of Holstein Friesian (HF) and crossbred HF dairy cattle calved between 1990 and 2015 from three government research farms in Thailand were analysed. 305-day milk yield was estimated by the Wood model and a test interval method. The Wood model was used for estimating cumulative 305-day milk yield, peak milk yield, days to peak milk yield and persistency. Genetic parameters were estimated using linear mixed models with herd, breed group, year and season of calving as fixed effects, and animals linked to a pedigree as random effects, together with a residual error. Univariate models were used to estimate variance components, heritability, estimated breeding values (EBVs) and repeatability of each trait, while pairwise bivariate models were used to estimate covariance components and correlations between traits in the same lactation and in the same trait across lactations. Results: The heritability of 305-day milk yield, peak milk yield and protein percentage have moderate to high estimates ranging from 0.19 to 0.45 while days to peak milk yield, persistency and fat percentage have low heritability ranging from 0.08 to 0.14 in lactation 1 cows. Further, heritability of most traits considered was higher in lactation 1 compared with lactations 2 and 3. For cows in lactation 1, high genetic correlations were found between 305-day milk yield and peak milk yield (0.86±0.07) and days to peak milk yield and persistency (0.99±0.02) while estimates of genetic correlations between the remaining traits were imprecise due to the high standard errors. The genetic correlations within the traits across lactation were high. There was no consistent trend of EBVs for most traits in the first lactation over the study period. Conclusion: Both the Wood model and test interval method can be used for milk yield estimates in these herds. However, the Wood model has advantages over the test interval method as it can be fitted using fewer test-day records and the estimated model parameters can be used to derive estimates of other lactation curve parameters. Milk yield, peak milk yield and protein percentage can be improved by a selection and mating program while days to peak milk yield, persistency and fat percentage can be improved by including into a selection index.

Genetic and Environmental Trends for Milk Production Traits in Sheep Estimated with Test-day Model

  • Oravcova, Marta;Pesovicva, Dana
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1088-1096
    • /
    • 2008
  • Data from milk performance testing were used to analyze genetic and environmental trends for purebred Tsigai, Improved Valachian and Lacaune sheep. 103,715 (Tsigai), 212,962 (Improved Valachian) and 2,196 (Lacaune) test-day records gathered by the State Breeding Institute of the Slovak Republic entered the analyses. The respective pedigree data comprised 23,724 (Tsigai), 51,401 (Improved Valachian) and 438 (Lacaune) records. The multiple-trait, mixed model methodology was used to predict the breeding values for daily milk yield, fat and protein content and to estimate the fixed and remaining random effects assumed to affect the above mentioned traits, separately for each breed. The breeding values for daily milk yield were adjusted for 150-day standardized lactation length by multiplying with the constant 150, as the breeding goal of the selection scheme in Slovakian sheep is to increase 150-day milk production and constant heritability throughout the whole lactation is assumed. The genetic trends were expressed as changes in averages of breeding values across birth years of animals. For Tsigai and Lacaune breeds, cumulative genetic changes over the analyzed period were 3.8 and 5.1 kg for 150-day milk, 0 and -0.16% for fat content and 0 and -0.12% for protein content. For Improved Valachian breed, either a low (1.6 kg for 150-day milk yield) or zero (fat and protein content) cumulative genetic change was found. The environmental trends were calculated as averages of solutions for flock-test day effect across years and months in which measurements were taken. A distinctive cyclical pattern which reflected short-time variation in milk production traits was found. Possible explanations for this phenomenon are given and discussed.

Mixed-effects model by projections (사영에 의한 혼합효과모형)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1155-1163
    • /
    • 2016
  • This paper deals with an estimation procedure of variance components in a mixed effects model by projections. Projections are used to obtain sums of squares instead of using reductions in sums of squares due to fitting both the assumed model and sub-models in the fitting constants method. A projection matrix can be obtained for the residual model at each step by a stepwise procedure to test the hypotheses. A weighted least squares method is used for the estimation of fixed effects. Satterthwaite's approximation is done for the confidence intervals for variance components.

Numerical Simulation of Soil-Structure Interaction in Centrifuge Shaking Table System (지반-구조물 상호작용 원심모형시험에 대한 수치해석)

  • Kim, Dong-Kwan;Park, Hong-Gun;Kim, Dong-Soo;Lee, Sei-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.201-204
    • /
    • 2010
  • Earthquake load to design a structure has been calculated from a fixed base SDOF model using amplified surface accelerations along soft soil layers. But the method dose not consider a soil-structure interaction. Centrifugal experiments that were consisted of soil, a shallow foundation and a structure were performed to find the effects of soil-structure interaction. The experiments showed that mass and stiffness of the foundation affected a response of the structure and nonlinear behavior of soil near the foundation. And a rocking displacement caused by overturning moment affected the response and increases a damping effect. In this study, the centrifugal experiment was simulated as a two dimensional finite element model. The finite element model was used for nonlinear time domain analysis of the OpenSees program. The numerical model accurately evaluated the behaviors of soil and the foundation, but the rocking effect and the behavior of structure were not described.

  • PDF

Virtual Flight Test for Conceptual Lunar Lander Demonstrator (달 착륙선 개념설계형상 검증모델 가상비행시험)

  • Lee, Won-Beom;Rew, Dong-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The conceptual design lunar lander demonstrator has been developed to use as a test bed for advanced spacecraft technologies and to test a prototype planetary lander capable of vertical takeoff and landing. Size of the lunar lander demonstrator is the same as that of lunar lander conceptually designed, however, the weight of lunar lander demonstrator is designed in 1/6 scale in consideration of gravity difference between moon and earth. The thruster clustering and virtual flight test were performed in the demonstrator fixed on the ground. The demonstrator ground test has been conducted for two months in the test site for the solid motor combustion of the Goheung Flight Center. The purposes of ground test of demonstrator are to demonstrate and verify essential electronics, propulsion system, control algorithm, embedded software, structure and system operation technologies before developing the flight model lander. This paper is described about the virtual flight test including test configuration, test aims and test facilities

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure (강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험)

  • Kim, Sehoon;Na, Okpin;Kim, Sungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.443-453
    • /
    • 2013
  • The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.

FLEXURAL STRENGTH OF IMPLANT FIXED PROSTHESIS USING FIBER REINFORCED COMPOSITE (섬유성 강화 컴포지트를 사용한 임플랜트 고정성 보철물의 굴곡강도)

  • Kang, Kyung-Hee;Kwon, Kung-Rock;Lee, Sung-Bok;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.526-536
    • /
    • 2006
  • Statement of problem : Use of fiber composite technology as well as development of nonmetal implant prosthesis solved many problems due to metal alloy substructure such as corrosion. toxicity, difficult casting, expensiveness and esthetic limit. After clinical and laboratory test, we could find out that fiber-reinforced composite prostheses have good mechanical properties and FRC can make metal-free implant prostheses successful. Purpose : The purpose of this study is to evaluate the flexural strength of implant fixed prosthesis using fiber reinforced composite. Material and methods : 2-implant fixture were placed in second premolar and second molar area in edentulous mandibular model, and their abutments were placed, and bridge prostheses using gold, PFG, Tescera, and Targis Vectris were fabricated. Tescera was made in 5 different designs with different supplements. Group I was composed by 3 bars with diameter 1.0mm and 5 meshes, 2 bars and 5 meshes for Group II, 1 bar and 5 meshes for Group III, and only 5 meshes were used for Group IV. And Group V is composed by only 3 bars. Resin (Tescera) facing was made to buccal part of pontic of gold bridge. All of gold and PFG bridges were made on one model, 5 Targis Vectris bridges were also made on one model, and 25 Tescera bridges were. made on 3 models. Each bridge was attached to the test model by temporary cement and shallow depression was formed near central fossa of the bridge pontic to let 5 mm metal ball not move. Flexual strength was marked in graph by INSTRON. Results : The results of the study are as follows. The initial crack strength was the highest on PFG. and in order of gold bridge Tescera I, Tescera II, Targis vectris, Tescera IV, Tescera III, and Tescera V. The maximum strength was the highest on gold bridge, and in order of PFG, Tescera I, Tescera IV Tescera II, Targis vectris, Tescera III, and Tescera V. Conculsions : The following conclusions were drawn from the results of this study. 1. Flextural strength of implant prosthesis using fiber reinforced composite was higher than average posterior occlusal force. 2. In initial crack strength, Tescera I was stronger than Tescera V, and weaker than PFG. 3. Kinds and number of auxillary components had an effect on maximum strength, and maximum strength was increased as number of auxillary components increased. 4 Maximum strength of Tescera I was higher than Targis vectris, and lower than PFG.

Variance Components and Genetic Parameters for Milk Production and Lactation Pattern in an Ethiopian Multibreed Dairy Cattle Population

  • Gebreyohannes, Gebregziabher;Koonawootrittriron, Skorn;Elzo, Mauricio A.;Suwanasopee, Thanathip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1237-1246
    • /
    • 2013
  • The objective of this study was to estimate variance components and genetic parameters for lactation milk yield (LY), lactation length (LL), average milk yield per day (YD), initial milk yield (IY), peak milk yield (PY), days to peak (DP) and parameters (ln(a) and c) of the modified incomplete gamma function (MIG) in an Ethiopian multibreed dairy cattle population. The dataset was composed of 5,507 lactation records collected from 1,639 cows in three locations (Bako, Debre Zeit and Holetta) in Ethiopia from 1977 to 2010. Parameters for MIG were obtained from regression analysis of monthly test-day milk data on days in milk. The cows were purebred (Bos indicus) Boran (B) and Horro (H) and their crosses with different fractions of Friesian (F), Jersey (J) and Simmental (S). There were 23 breed groups (B, H, and their crossbreds with F, J, and S) in the population. Fixed and mixed models were used to analyse the data. The fixed model considered herd-year-season, parity and breed group as fixed effects, and residual as random. The single and two-traits mixed animal repeatability models, considered the fixed effects of herd-year-season and parity subclasses, breed as a function of cow H, F, J, and S breed fractions and general heterosis as a function of heterozygosity, and the random additive animal, permanent environment, and residual effects. For the analysis of LY, LL was added as a fixed covariate to all models. Variance components and genetic parameters were estimated using average information restricted maximum likelihood procedures. The results indicated that all traits were affected (p<0.001) by the considered fixed effects. High grade $B{\times}F$ cows (3/16B 13/16F) had the highest least squares means (LSM) for LY ($2,490{\pm}178.9kg$), IY ($10.5{\pm}0.8kg$), PY ($12.7{\pm}0.9kg$), YD ($7.6{\pm}0.55kg$) and LL ($361.4{\pm}31.2d$), while B cows had the lowest LSM values for these traits. The LSM of LY, IY, YD, and PY tended to increase from the first to the fifth parity. Single-trait analyses yielded low heritability ($0.03{\pm}0.03$ and $0.08{\pm}0.02$) and repeatability ($0.14{\pm}0.01$ to $0.24{\pm}0.02$) estimates for LL, DP and parameter c. Medium heritability ($0.21{\pm}0.03$ to $0.33{\pm}0.04$) and repeatability ($0.27{\pm}0.02$ to $0.53{\pm}0.01$) estimates were obtained for LY, IY, PY, YD and ln(a). Genetic correlations between LY, IY, PY, YD, ln(a), and LL ranged from 0.59 to 0.99. Spearman's rank correlations between sire estimated breeding values for LY, LL, IY, PY, YD, ln(a) and c were positive (0.67 to 0.99, p<0.001). These results suggested that selection for IY, PY, YD, or LY would genetically improve lactation milk yield in this Ethiopian dairy cattle population.

Genetic Evaluation of Somatic Cell Counts of Holstein Cattle in Zimbabwe

  • Mangwiro, F.K.;Mhlanga, F.N.;Dzama, K.;Makuza, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1347-1352
    • /
    • 2000
  • The objectives of the study were to examine non-genetic factors that influence somatic cell counts in dairy cattle and to estimate the genetic parameters of somatic cell counts. A total of 34, 097-test day somatic cell count records were obtained from the Zimbabwe Dairy Services Association (ZDSA). The data were from 5, 615 Holstein daughters of 390 sires and 2, 541 dams tested between May 1994 and December 1998. First lactation cows contributed 22, 147 records to the data set, while 11, 950 records were from second and later parity cows. The model for analysis included fixed effects of month of calving, year of calving, stage of lactation, calving interval and test date. Milk yield and age on test day were fitted in the model as covariates. The additive genetic effects pertaining to cows, sires and dams and the residual error were the random effects. The Average Information Restricted Maximum Likelihood algorithm was used for analysis. The heritability of somatic cell scores was low at $0.027{\pm}0.013$ for parity one cows and $0.087{\pm}0.031$ for parity two and above. Repeatability estimates were $0.22{\pm}0.01$ and $0.30{\pm}0.01$ for the two lactation groups, respectively. Genetic and phenotypic correlations between the somatic cell scores and test day milk production were small and negative. It seems that there is no genetic link between somatic cell counts and milk yield in Holstein cattle in Zimbabwe. The results also seem to indicate that somatic cell count is a trait that is mainly governed by environmental factors.

Effect of repetitive firing on passive fit of metal substructure produced by the laser sintering in implant-supported fixed prosthesis

  • Altintas, Musa Aykut;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2020
  • PURPOSE. The aim of the present study was to investigate the passive fit of metal substructure after repetitive firing processes in implant-supposed prosthesis. MATERIALS AND METHODS. Five implants (4 mm diameter and 10 mm length) were placed into the resin-based mandibular model and 1-piece of screw-retained metal substructure was produced with the direct metal laser sintering (DMSL) method using Co-Cr compound (n = 10). The distance between the marked points on the multiunit supports and the marginal end of the substructure was measured using a scanning electron microscope (SEM) at each stage (metal, opaque, dentin, and glaze). 15 measurements were taken from each prosthesis, and 150 measurements from 10 samples were obtained. In total, 600 measurements were carried out at 4 stages. One-way ANOVA test was used for statistical evaluation of the data. RESULTS. When the obtained marginal range values were examined, differences between groups were found to be statistically significant (P<.001). The lowest values were found in the metal stage (172.4 ± 76.5 ㎛) and the highest values (238.03 ± 118.92 ㎛) were determined after glaze application. When the interval values for groups are compared with pairs, the differences between metal with dentin, metal with glaze, opaque with dentin, opaque with glaze, and dentin with glaze were found to be significant (P<.05), whereas the difference between opaque with metal was found to be insignificant (P=.992). CONCLUSION. Passive fit of 1-piece designed implant-retained fixed prosthesis that is supported by multiple implants is negatively affected by repetitive firing processes.