• Title/Summary/Keyword: Fixed grid

Search Result 247, Processing Time 0.025 seconds

Study of Spatial and Temporal Accuracy Estimation Related with Mesh Interafce Region on Overlapped Grids (중첩격자계에서 교차영역 구성에 따른 시간/공간 정확도에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.95-107
    • /
    • 1999
  • The spatial error due to the non-conservative interpolation become first-order when second-order conservative schemes are used, discontinuities are located away from the overlapped regions, and if the length of the overlapped region is not proportional to the grid spacing. Therefore, the solution accuracy is ensured if two domains overlap each other with a fixed grid point and the interpolation is occurred in smooth flow regions. To validate the spatial and temporal accuracy due to the non-conservative interpolation, inviscid and viscous problems are tested.

  • PDF

Modeling of Grid-connected Wind Energy Conversion System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 계통연계형 풍력발전시스템 모델링)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.320-322
    • /
    • 2002
  • The paper presents an electrical model of a grid-connected wind energy conversion system (WECS) with a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and AC-DC-AC conversion scheme for simulating dynamic behaviors and performance responding to varying wind speed input. The electric output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage of WECS terminal bus at a specific level. Aerodynamic models are used to incorporate the power characteristics to wind speed. The modeling and simulation of the WECS are realized on PSCAD/EMTDC environment.

  • PDF

KOMPSAT EOC Grid Reference System

  • Kim, Youn-Soo;Kim, Yong-Seung;Benton, William
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.349-354
    • /
    • 1998
  • The grid reference system (GRS) has been useful for identifying the geographical location of satellite images. In this study we derive a GRS for the KOMPSAT Electro-Optical Camera (EOC) images. The derivation substantially follows the way that SPOT defines for its GRS, but incorporates the KOMPSAT orbital characteristics. The KOMPSAT EOC GRS (KEGRS) is designed to be a (K,J) coordinate system. The K coordinate parallel to the KOMPSAT ground track denotes the relative longitudinal position and the J coordinate represents the relative latitudinal position. The numbering of K begins with the prime meridian of K=1 with K increasing eastward, and the numbering of J uses a fixed value of J=500 at all center points on the equator with J increasing northward. The lateral and vertical intervals of grids are determined to be 12.5 km about at the 38$^{\circ}$ latitude to allow some margins for the value-added processing. The above design factors are being implemented in a satellite programming module of the KOMPSAT Receiving and Processing System (KRPS) to facilitate the EOC data collection planning over the Korean peninsula.

  • PDF

A Switching Method of Single Phase Grid Connected Inverter for Common Mode Noise Reduction (계통연계형 단상인버터의 Common Mode Noise 저감을 위한 Switching 방법)

  • Lee, Seung-Ju;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • A pulse-width modulation (PWM) method for common mode noise reduction in a PWM inverter connected to a single-phase grid is proposed in this study. The extensively used conventional switching method may experience common mode voltage problems, which generate current leakage and electromagnetic induction problems. In the proposed switching method, the neutral point of the output voltage is always fixed at both ends of the input voltage to reduce common mode noise. The validity of the proposed method is proven through simulation and experimental results.

Surface Encoding Method Based on the Superposed Pattern (적층 패턴 기반의 서피스 인코딩 방법)

  • Jung, Kwang-Suk;Park, Sung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Instead of the surface pattern arranged repeatedly in two axial direction on a plane, we propose double patterns superposing two one-axial linear patterns as a reference target for surface encoding. A upper layer of the superposed pattern is the transparent glass with grooves cut in it at a fixed pitch. The position is sensed by detecting a shift of beam due to difference of a refractive index. And a lower layer is the aluminum with color-coated grooves. The amount of beam reflected on the layer varies according to its targeting position and is detected for encoding. For the above reference pattern, we can detect two-axial positions using only the single beam. Furthermore, the pattern size can be expanded with a size of the detector kept constant, meaning that the measured range can be expanded easily. In this paper, we review the existing optical encoding methods for grid pattern, and discuss the hardware implementation of the suggested surface encoding method.

Numerical analysis of continuous casting process with electromagnetic brake (연속주조공정에서의 EMBR의 수치해석)

  • 김현경;유흥선;유수열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.766-773
    • /
    • 1999
  • A numerical analysis has been performed solidification problem using the fixed grid-enthalpy method with enthalpy-porosity relation. A modified standard $k-\varepsilon$ model was applied to describe the influence of turbulent flow. Computational procedures are based on the finite volume method and the non-staggered grid system. Comparisons with the different three experimental results show that applying a modified standard $k-\varepsilon$model in mushyzone is better than the previous computation results. This paper includes another EMBR's influences such as change of velocity field, Increasement of temperature and dispersion of flow out of nozzle into the flow field. These EMBR's influences are compared to case without EMBR.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

Comparison of Characteristics for Variable Operation using Doubly-fed Induction Generator and Fixed Speed Operation in Wind Turbine System (이중여자 유도발전기를 이용한 가변속운전과 정속운전 풍력발전시스템의 운전특성 비교)

  • Ro, Kyoung-Soo;Kim, Tae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1313-1320
    • /
    • 2009
  • This paper analyzes the steady-state operating characteristics of doubly-fed induction generator(DFIG) and fixed-speed induction generator(FSIG) in wind turbine system. It also presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, 3-phase fault and 1-phase ground fault of the network. Simulation results show the variations of generator's active/reactive output, rotor speed, terminal voltage, fault current, etc. Case studies demonstrate that DFIG illustrates better performance compared to FSIG.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF