• Title/Summary/Keyword: Fixed carbon content

Search Result 74, Processing Time 0.025 seconds

Quality Comparison of Activated Carbon Produced From Oil Palm Fronds by Chemical Activation Using Sodium Carbonate versus Sodium Chloride

  • MAULINA, Seri;HANDIKA, Gewa;Irvan, Irvan;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.503-512
    • /
    • 2020
  • Using Na2CO3 versus NaCl as chemical activator, we compared the quality of activated carbon produced from oil palm fronds as raw material. These activators were selected for comparison because both are readily available and are environmentally friendly. In the manufacturing, we used Indonesian National Standard (SNI 06-3730-1995) parameters. For the quality comparison, we determined activated-carbon yield, moisture, ash, volatiles, and fixed-carbon contents; and adsorption capacity of iodine. The best characteristics, assessed by morphological surface analysis and Fourier transform infrared (FTIR) spectral analysis, were observed in the carbon activated by Na2CO3 at an activator concentration of 10% and carbonization temperature of 400 ℃. The results were as follows: activated-carbon yield, 84%; water content, 8.80%; ash content, 2.20%; volatiles content, 14.80%; fixed-carbon content, 68.60%; and adsorption capacity of iodine, 888.51 mg/g. Identification using the FTIR spectrophotometer showed the presence of the functional groups O-H, C=O, C=C, C-C, and C-H in the Na2CO3-activated carbon.

Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.118-133
    • /
    • 2024
  • The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black Content (카본 함량에 따른 니트릴 부타디엔 고무의 음향 특성)

  • Jung Kyungil;Yoon Suk Wang;Cho Kuk Young;Park Jung-ki
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.377-380
    • /
    • 2002
  • Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black ContentAcoustic and mechanical properties of Nitrile Butadiene Rubbers (NBR) with the variation of the carbon black content were investigated. NBR where the acrylonitrile content is $33\%$ based on the mole percent has been prepared with fixed sulfur content for vulcanization. Acoustic measurement of the prepared rubbers were peformed in the frequency region of $300\;\~\;1000\;kHz$. Their mechanical properties such as density, hardness were also measured. Increase of the carbon black content in the rubber resulted in enhancement of the mechanical property and linear increase of the sound speed as function of the carbon black content. Interestingly, attenuation of the sound speed was only affected by the existence of the carbon black and not by the amount of carbon black in the experiment range of this article. In this study, it was found that the amount of carbon black content in the NBR was correlated with the acoustic properties and can be estimated nondestructively by the measurement of the specific acoustic property.

  • PDF

Study on the Dissolution Characteristics of Liquid $CO_2$ Released by Fixed Pipeline (고정 파이프라인에서 분사된 액체 이산화탄소 용해특성 연구)

  • 김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.863-871
    • /
    • 2004
  • The use of fossil fuels like coal, oil and natural gases around the world causes an increase of the carbon dioxide content in the atmosphere. In order to reduce the concentration of the greenhouse gas, the idea of carbon dioxide sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect. Therefore, in the present study, calculations of the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500m in depth by fixed pipeline are performed. The results show that carbon dioxide droplets change to carbon dioxide bubbles in gas phase around 500m in depth, and the droplets are completely dissolved below 500 m in depth if the liquide carbon dioxide is released both at 1,000 m in depth with the initial diameter of 0.007m or less and at 1,500m in depth with the diameter of 0.011m or less.

Electrical and Mechanical Properties of Graphite Nanosheet/Carbon Nanotubes-filled Epoxy Nanocomposites

  • Kim, Ki-Seok;Choi, Kyeong-Eun;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.335-338
    • /
    • 2009
  • In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.

Characteristics of Carbonized Biomass Produced in a Manufacturing Process of Wood Charcoal Briquettes Using an Open Hearth Kiln (평로탄화로를 이용한 성형목탄 제조공정에서 생산된 탄화 바이오매스의 특성)

  • JU, Young Min;LEE, Hyung Won;KIM, Ah-ran;JEONG, Hanseob;CHEA, Kwang-Seok;LEE, Jaejung;AHN, Byoung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.181-195
    • /
    • 2020
  • Characteristics of carbonized biomass obtained from a Wood charcoal briquette manufacturing process using an open hearth kiln are analyzed in this research, and differences in the characteristics based on the results of a mechanical screening process and the position within the kiln. One type of biomass and five types of carbonized biomass were collected from a Wood charcoal briquette manufacturer. After screening and grinding processes were performed on samples of 1 type of biomass and 5 types of carbonized biomass extracted from a Wood charcoal briquettes manufacturer to classify by particle size, fixed carbon, ash, volatile matters, elemental composition, and high heating value (HHV) were measured. Experimental results showed that the carbonized biomass collected from the middle layer had the highest HHV, 20.4 MJ/kg, and therefore had the highest fuel quality. In terms of particle size, the carbonized biomass below 100 mesh had the lowest ash content and the highest HHV, carbon content, and fixed carbon content. Correlation analyses showed that ash content had negative correlations with HHV, volatile matters, fixed carbon, and carbon content, which suggested that ash content affected negatively on fuel quality.

Characteristics of Ni-Carbon Nanotube Composite Coatings with the CNT Content (CNT 첨가량에 따른 Ni-CNT 복합도금막의 특성)

  • Bae, KyooSik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2013
  • Ni-CNT(Carbon Nanotube) composite coatings is were formed by electrodeposition and their physical properties were investigated with variations of CNT content(1, 3, 6. 9 g/L) in the electrolyte solution, while the current density and electroplating time were fixed respectively at $6A/dm^2$ and 90 min.. With increasing CNT content from 1 to 9 g/L, incorporated CNTs into the composite coating were limited from 4.65 wt.% to 7.38 wt.%. Microhardness and contact angle values were increased with increasing CNT content of upto 3 g/L. With increasing the CNT content further, physical properties were degraded due to agglomeration, poor adhesion of CNTs to Ni matrix and thus rough surfaces. Optimum electroplating conditions were found to be the CNT content of 3 g/L, current density of 6 A/dm2 and electroplating time of 90 min.

The Effect of Silicon-Alloying on the Characteristics of the Pyrolytic Carbonds Deposited in Tumbling Bed by CVD (Tumbling Bed에서 화학증착법에 의해 증착되는 열분해탄소의 특성에 미치는 Silicon-Alloying의 효과)

  • 윤영진;이재영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.166-172
    • /
    • 1983
  • In this study the sillicon-alloyed isotropic pyrolytic carbon was deposited in the tumbling bed from the pyrolysis of propane and silicon tetrachloride and investigated whether the silicon-alloyed isotropic pyrolytic carbon deposited in this study was usable as bionaterial or not. The silicon-allyed isotropic pyrolytic carbon was varied by controlling the process variables such as propane con-concentration and the argon flow rate flowing in to the silicon tetrachloride bubbler at a fixed reaction bed tempera-ture of 120$0^{\circ}C$ a rotation of reaction tube of 40 rpm a bed particle weight of 7.5 g and a total flow rate of 21/min; the propane concentration was varied from 10 to 70 and the argon flow rate flowing into the silicon tetrachloride bubble from 0 to 1000 cc/min. The results show that the silicon-alloyed isotropic pyrolytic carbon was obtained at all conditions investigated, . And then the alloyed silicon content is rangion from 7 to 14.5 wt%. The density and deposition rate of deposited silicon-alloyed isotropic carbon increased axxording to silicon content and propane concentration. And the apparent crystal-size(Lc) of pyrolytic carbon is not changed with silicon content. The density and apparant crystallite size are respec-tively in the range of 1.94 to 2.06 and 20 to 25$\AA$ It is shown that the silicon-alloyed isotropic pyrolytic carbon ob-tained in this experiment is usable as biomaterial.

  • PDF

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers (하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향)

  • Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae;Lee, Sujeong
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.