• Title/Summary/Keyword: Fixed Charge

Search Result 190, Processing Time 0.04 seconds

A Study on the Correction of Error Induced by FTOD for Investigation of a Metal Jet Behavior (금속제트 거동 분석에서의 FTOD 오차 보정에 관한 연구)

  • Joo, Jaehyun;Lee, Heonjoo;Kim, Siwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.577-584
    • /
    • 2014
  • In this study, the behavior of a shaped charge projectile's metal jet was analyzed using flash radiography. The projectile was installed horizontally to observe the behavior of jet for enough time. While the X-ray tube heads are fixed at one point, the behavior range of the jet is wide in this experimental set up, therefore the angle between the X-ray tube heads and the jet tip is changed continuously as jet moves forward. Jet particle's locations calculated from the X-ray films become different from their real positions under this situation because of the film to object distance(FTOD) and correction for error by FTOD is required. In this study, a method was devised to correct the error by FTOD and this was applied for the investigation of jet behavior of a 70 mm caliber's shaped charge.

Simulation of Channel Dimension Dependent Conduction and Charge Distribution Characteristics of Silicon Nanowire Transistors using a Quantum Model (양자효과를 고려한 실리콘 나노선 트랜지스터의 채널 크기에 따른 전도 및 전하분포 특성 시뮬레이션)

  • Hwang, Min-Young;Choi, Chang-Yong;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.728-731
    • /
    • 2009
  • We report numerical simulations to investigate of the dependendce of the on/off current ratio and channel charge distributions in silicon nanowire (SiNW) field-effect transistors (FETs) on the channel width and thicknesses. In order to investigate the transport behavior in devices with different channel geometries, we have performed detailed two-dimensional simulations of SiNWFETs and control FETs with a fixed channel length L of $10\;{\mu}m$, but varying the channel width W from 5 nm to $5\;{\mu}m$, and thickness t from 10 nm to 30 nm. We have show that $Q_{ON}/Q_{OFF}$ drastically decreases (from $^{\sim}2.9{\times}10^4$ to $^{\sim}9.8{\times}10^3$) as the channel thickness increases (from 10 nm to 30 nm). As a result of the simulation using a quantum model, even higher charge density in the bottom of SiNW channel was observed then in the bottom of control channel.

Factors Affecting Post-Traumatic Stress of General Hospital Nurses after the Epidemic of Middle East Respiratory Syndrome Infection (메르스 감염 유행 후 상급종합병원 간호사의 외상 후 스트레스 영향요인)

  • Kim, Hyun Jin;Park, Ho Ran
    • Journal of Korean Clinical Nursing Research
    • /
    • v.23 no.2
    • /
    • pp.179-188
    • /
    • 2017
  • Purpose: This study examined post-traumatic stress (PTS) and the factors affecting it among general hospital nurses after the MERS(Middle East Respiratory Syndrome) epidemic. Methods: Data were collected from 170 nurses who worked at general hospitals since the first reported MERS outbreak. The IES-R-K assessed PTS. Data were analyzed using SPSS. Results: The mean PTS level was 7.80 points (range: 0~88); 7.1% of the participants were at a high risk. Nurses who had been in contact with patients suspected or diagnosed with MERS had high post-traumatic levels; those who had been quarantined during the MERS outbreak had relatively higher PTS levels. Shift-work nurses had higher PTS levels than those with fixed working hours. Above charge' nurses stress levels were higher than staff nurses' stress levels. The results showed that factors including contact with an MERS-suspected or diagnosed patient, position at work, and working status of MERS-affected nurses explained 16% of the PTS. Among the main variables, nurses' above charge position was the greatest factor affecting PTS. Discussion: It is necessary to develop intervention studies and programs considering these variables. Furthermore, development and implementation of differentiated programs should be done considering the position of above charge nurses.

Plasma Etching Damage of High-k Dielectric Layer of MIS Capacitor (High-k 유전박막 MIS 커패시터의 플라즈마 etching damage에 대한 연구)

  • 양승국;송호영;오범환;이승걸;이일항;박새근
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1045-1048
    • /
    • 2003
  • In this paper, we studied plasma damage of MIS capacitor with $Al_2$O$_3$ dielectric film. Using capacitor pattern with the same area but different perimeters, we tried to separate etching damage mechanism and to optimize the dry etching process. After etching both metal and dielectric layer by the same condition, leakage current and C-V measurements were carried out for Pt/A1$_2$O$_3$/Si structures. The flatband voltage shift was appeared in the C-V plot, and it was caused by the variation of the fixed interface charge and the interface trapped charge. From I-V measurement, it was found the leakage current along the periphery could not be ignored. Finally, we established the process condition of RF power 300W, 100mTorr, Ar/Cl$_2$ gas 60sccm as an optimal etching condition.

  • PDF

A Basic Study of Energy Storage Super Capacitor for PV System (PV시스템 적용을 위한 슈퍼 커폐시터 기초 특성 고찰)

  • Yu Gwon-Jong;Jung Young-Seok;Jung Myung-Woong;Park Yong-Sung;Choi Jaeho;Choi Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.49-52
    • /
    • 2002
  • Super Capacitors are now commercially available. To design an energy storage system with these devices it has to be understood that the device cannot be described by a single fixed capacitance. Furthermore, an internal charge redistribution process makes it difficult to predict the terminal voltage accurately. As a result, the device should be operated as a charge storage device and not as a voltage source. This paper deals with Energy Storage System with Super Capacitor for PV System. Discussed in this paper we, explains the basic characteristics of Super Capacitor which is compared with the Second Batteries.

  • PDF

Numerical Study on The Injection-Compression Molding Characteristic of High Viscosity Plastic Fluids (고점도 유동장이 사출-압축 성형에 미치는 영향)

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.345-350
    • /
    • 2002
  • Recently, as the development of manufacturing technique on SMC(sheet molding compound), various numerical and experimental approaches to injection and compression molding have been investigated. Injection and compression molding, however, has so various cases with complicated boundary condition that it is difficult to analyze mold characteristics precisely. In addition, since a slight change in process variables can significantly change the resulting mold thickness, a proper design is important to compression molding process. Therefore, in this study, the effects of various parameters on compression molding process have been investigated using FEM(finite element method) to formulate the melt front advancement during the mold filling process. To verify the results of present analysis, they are compared with those of reference. The results show a strong effect of initial charge volume, injection time and pressure as a result of variations in the rectangular charge shape.

Effects of Annealing on Silicon Dioxide using Rapid Thermal Process System (급속 열처리 장치를 이용한 실리콘 산화막의 Annealing 효과)

  • Park, H,W.;Jang, H.Y.;Hwang, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.383-386
    • /
    • 1988
  • In MOS integrated circuits, annealing after oxidation process is necessary to improve physical properties of silicon dioxide. With subsequent annealing in inert gases such as nitrogen or argon, and excess silicon bond is allowed time to complete the oxidation and surface charge density is reduced. In this paper, we will present effects of the rapid thermal annealing on silicon dioxide. In order to evaluate characteristics of silicon dioxide, we analyzed C-V curve dependent on annealing time and temperature, and presented variation of fixed oxide charge.

  • PDF

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells (N-type 결정질 실리콘 태양전지 응용을 위한 Al2O3 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.106-110
    • /
    • 2014
  • The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.