Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2014.24.3.106

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells  

Jeong, Myung-Il (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University)
Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University)
Abstract
The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.
Keywords
$Al_2O_3$; Passivation; MOS; EOT; $V_{FB}$; Negative fixed charge;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M.-I. Jeong and C.-J. Choi, "Passivation properties of $SiN_x$ and $SiO_2$ thin films for the application of crystalline Si solar cells", J. Korean Cryst. Growth Cryst. Technol. 24[1] (2014) 1.   과학기술학회마을   DOI   ScienceOn
2 Armin G Aberle, "Surface passivation of crystalline silicon solar cells: a review", Prog. Photovoltaics 8[5] (2000) 473.   DOI
3 G. Dingemans and W.M.M. Kessels, "Status and prospects of $Al_2O_3$-based surface passivation schemes for silicon solar cells", J. Vac. Sci. Technol. A 30 (2012) 040802.   DOI   ScienceOn
4 Steven M. George, "Atomic Layer Deposition: An Overview", Chem. Rev. 110 (2010) 111.   DOI   ScienceOn
5 M.D. Groner, F.H. Fabreguette, J.W. Elam and S.M. George, "Low-temperature $Al_2O_3$ atomic layer deposition", Chem. Mater. 16 (2004) 639.   DOI   ScienceOn
6 B. Hoex, M.C.M. van de Sanden, J. Schmidt, R. Brendel and W.M.M. Kessels, "Surface passivation of phosphorus-diffused n+-type emitters by plasma-assisted atomic-layer deposited $Al_2O_3$", Phys. Status Solidi RRL 6[1] (2012) 4.   DOI   ScienceOn
7 B. Vermang, A. Rothschild, A. Racz, J. John, J. Poortmans, R. Mertens, P. Poodt, V. Tiba and F. Roozeboom, "Spatially separated atomic layer deposition of $Al_2O_3$, a new option for high-throughput Si solar cell passivation", Prog. Photovoltaics 19[6] (2011) 733.   DOI
8 P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch and R. Preu, "Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide", Appl. Phys. Lett. 95 (2009) 151502.   DOI   ScienceOn
9 G. Dingemans, A. Clark, J.A. van Delft, M.C.M. van de Sanden and W.M.M. Kessels, "$Er^{3+}$ and Si luminescence of atomic layer deposited Er-doped $Al_2O_3$ thin films on Si(100)", J. Appl. Phys. 109 (2011) 113107.   DOI   ScienceOn
10 C.-J. Choi, M.-G. Jang, Y.-Y. Kim, M.-S. Jeon, B.-C. Park, S.-J. Lee, R.-J. Jung, H.-D. Yang, M. Chang and H.-S. Hwang, "Effects of high-pressure hydrogen post-annealing on the electrical and structural properties of the Pt-Er alloy metal gate on $HfO_2$ film", Electrochem. Solid State Lett. 9 (2006) G228.   DOI   ScienceOn
11 M. Tapajna, K. Husekova, J.P. Espinos, L. Harmatha and K. Frohlich, "Precise determination of metal effective metal work function and fixed charge in MOS capacitors with high-k dielectric", Mater. Sci. Semicond. Process. 9 (2006) 969.   DOI
12 K.-H. Lee, "A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application", J. Korean Cryst. Growth Cryst. Technol. 21[6] (2011) 225.   과학기술학회마을   DOI   ScienceOn
13 A.W. Blakers and M.A. Green, "20% efficiency silicon solar cells", Appl. Phys. Lett. 48 (1986) 215.   DOI   ScienceOn
14 A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin and P.R. Mei, "New processes for the production of solar-grade polycrystalline silicon: A review", Sol. Energy Mater. Sol. Cells 92 (2008) 418.   DOI   ScienceOn
15 K.T. Li, X.Q. Wang, P.F. Lu, J.N. Ding and N.Y. Yuan, "Influence of the microstructure of n-type Si : H and passivation by ultrathin $Al_2O_3$ on the efficiency of Si radial junction nanowire array solar cells", Sol. Energy Mater. Sol. Cells 128 (2014) 11.   DOI
16 H.-P. Wang, T.-Y. Lin, M.-L. Tsai, W.-C. Tu, M.-Y. Huang, C.-W. Liu, Y.-L. Chueh and J.-H. He, "Toward Efficient and Omnidirectional n-Type Si Solar Cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures", ACS Nano 8[3] (2014) 2959.   DOI   ScienceOn
17 H.C. Jung, Y.K. Paek, H.H. Kim, J.H. Eum, K. Choi, H.-T. Kim and H.S. Chang, "Formation of lotus surface structure for high efficiency silicon solar cell", J. Korean Cryst. Growth Cryst. Technol. 20[1] (2010) 7.   과학기술학회마을   DOI   ScienceOn
18 M.A Green, J. Zhao, A. Wang and S.R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells", Sol. Energy Mater. Sol. Cells 65 (2001) 9.   DOI   ScienceOn
19 D. Lei, X. Yu, L. Song, X. Gu, G. Li and D. Yang, "Modulation of atomic-layer-deposited $Al_2O_3$ film passivation of silicon surface by rapid thermal processing", Appl. Phys. Lett. 99 (2011) 052103.   DOI