• Title/Summary/Keyword: Fission

Search Result 688, Processing Time 0.028 seconds

A Study on the Environmental Radioactive Strontium Analysis (환경중 방사성 스트론튬 분석 방법 연구)

  • Lee, Goung-Jin;Hwang, Jung-Lae;Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.155-160
    • /
    • 1999
  • In the natural, there exist several kinds of radioactive isotopes. From atmospheric weapon tests and then some isotopes are naturally radioactivity above all things, nuclear power plant operation and man-made radioactive isotopes concern steadily growing in the environment. During the fission process of nuclear weapon tests and nuclear power plant operation, more than 200 radioactive isotopes are generated. Among them, $^{90}Sr$ and $^{137}Cs$ has been regarded as very important isotopes due to characteristics. In this paper, a quantitative analysis method of environment low level $^{90}Sr$ is studied. Radioactivity level of the environmental $^{90}Sr$ is very low, and it emits continuous beta spectrum, and $^{90}Sr$ exists together with $^{89}Sr$, $^{90}Y$ and other radioactive isotopes. It very difficult to make the quantitative analysis of $^{90}Sr$. For the analysis of low level radioactive strontium, enrich and chemical separation of strontium from the other radioactive isotopes are needed. For the estimation of strontium recovery ratio, so called SGAT(Strontium Gravimetric Analysis Technique) was generally used among the domestic research groups, and chemical procedures were developed appropriation for the SGAT, Recently, by using ICP(Inductively Coupled atomic Plasma emission spectrophotometer), amounts of stable atoms can be measured easily and accurately to the extend of ppm or ppb. In this paper, new chemical procedures are developed to exploits the ICP technique. New developed method has simpler chemical treatment procedures and then it gives more accurate results compared with the traditional SGAT.

  • PDF

Regulation of Mitochondrial Homeostasis in Response to Endurance Exercise Training in Skeletal Muscle (지구성 훈련에 반응한 골격근의 미토콘드리아 항상성 조절)

  • Ju, Jeong-sun
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.361-369
    • /
    • 2017
  • Mitochondrial homeostasis is tightly regulated by two major processes: mitochondrial biogenesis and mitochondrial degradation by autophagy (mitophagy). Research in mitochondrial biogenesis in skeletal muscle in response to endurance exercise training has been well established, while the mechanisms regulating mitophagy and the relationship between mitochondrial biogenesis and degradation following endurance exercise training are not yet well defined. Studies have demonstrated that endurance exercise training increases the expression levels of mitochondrial biogenesis-, dynamics-, mitophagy-related genes in skeletal muscle. However, the increased levels of mitochondrial biogenesis marker proteins such as Cox IV and citrate synthase, by endurance exercise training were abolished when autophagy/mitophagy was inhibited in skeletal muscle. This suggests that both autophagy/mitophagy plays an important role in mitochondrial biogenesis/homeostasis and the coordination between the opposing processes may be important for skeletal muscle adaptation to endurance exercise training to improve metabolic function and endurance exercise performance. It is considered that endurance exercise training regulates each of these processes, mitochondrial biogenesis, fusion and fission events and autophagy/mitophagy, ensuring a relatively constant mitochondrial population. Exercise training may also have contributed to mitochondrial quality control which replaces old and/or unhealthy mitochondria with new and/or healthy ones in skeletal muscle. In this review paper, the molecular mechanisms regulating mitochondrial biogenesis and mitophagy and the coordination between the opposing processes is involved in the cellular adaptation to endurance exercise training in skeletal muscle will be discussed.

Geochronology and Cooling history of the Mesozoic Granite Plutons in the Central Part of the Ogcheon Fold Belt, South Korea (남한 습곡대 중앙부의 중생대 화강암 질암의 생선년대와 냉각사)

  • Myung-Shik JIN
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.153-167
    • /
    • 1995
  • Emplacement ages for the granite plutons of the Jurassic and the Cretaceous times in the central Ogcheom Fold Belt were determined by Rb-Sr whole rock and mineral isocheon methods. In addition mineral ages for the plutons were determined by K-Ar and fission track methods. In turn, thermal histories and uplifting rates of the granitic bodies are elucidated from the isotopic ages. The Jecheon(~203 Ma) and Mungyeong(at lest~200 Ma) granites of the Jurassic and the Muamsa, Wolagsan and Daeyasan granites(~110 Ma) of the Cretaceous show high strontium initial ratios [$(^{87}Sr/^{86}Sr)_1$0.7100],suggesting that the granitic magmas have been generated by partial melting of crustal materials (S-type), or by mixing of mantle and crustal materials. Only mineral ages of the Sogrisan and Hyeongjebong granites (~90 Ma) were determined by K-Ar method, and petrogenesis of them were not defined yet. The two Jurassic granite plutons were cooled rapidly down to $300^{\circ}C$, right after the plutons were slowly cooled down since then, due to their deep emplacment. During the Middle Cretaceous period, the Jurassic Mungyeong granitic pluton was intruded and thermally affected much by the surrounding Wolagsan and Daeyasan granites. Accordingly the Rb-Sr mineral age, K-Ar hornblende and biotite ages of the Mungyeong granite appear to be reduced or reset due to the thermal effects above their blocking temperatures. All the cretaceous granites have been cooled much ore simply and rapidly down than the Jurassic ones below $300^{\circ}C$, owing to their shallow emplacement.

  • PDF

Mad1p, a Component of the Spindle Assembly Checkpoint in Fission Yeast, Suppresses a Novel Septation-defective Mutant, sun1, in a Cell Division Cycle

  • Kim In G.;Rhee Dong K.;Jeong Jae W.;Kim Seong C.;Won Mi S.;Song Ki W.;Kim Hyong B.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.162-172
    • /
    • 2002
  • Schizosaccharomyces pombe is suited for the study of cytokinesis as it divides by forming a septum in the middle of the cell at the end of mitosis. To enhance our understanding of the cytokinesis, we have carried out a genetic screen for temperature-sensitive S. pombe mutants that show defects in septum formation and cell division. Here we present the isolation and characterization of a new temperature-sensitive mutant, sun1(septum uncontrolled), which undergoes uncontrolled septation during cell division cycle at restrictive temperature $(37^{\circ}C)$. In sun1 mutant, actin ring and septum are positioned at random locations and angles, and nuclear division cycle continues. These observations suggest that the sun] gene product is required for the proper placement of the actin ring as well as precise septation. The sun] mutant is monogenic recessive mutation unlinked to previously known various cdc genes of S. pombe. In a screen for $sunl^+$ gene to complement the sun] mutant, we have cloned a gene, $susl^+$(suppressor of sun1 mutant), that encodes a protein of 689 amino acids. The predicted amino acid sequence of $susl^+$ gene is similar to the human hMadlp and Saccharomyces cerevisiae Mad1p, a component of the spindle checkpoint in eukaryotic cells. The null mutant of $susl^+$ gene grows normally at various temperatures and has the increased sensitivity to anti-microtubule drug, while $susl^+$ mutant shows no sensitivity to microtubule destabilizing drugs. The putative S. pombe Sus1p directly interacts with S. pombe Mad2p in yeast two-hybrid assays. These data suggest that the newly isolated susr gene encodes S. pombe Mad1p and suppresses sun] mutant defective in controlled septation in a cell division cycle.

  • PDF

Nondestructive Measurement of the Coating Thickness in the Simulated TRISO-Coated Fuel Particle Using Micro-Focus X-ray Radiography (마이크로포커스 X-선 투과 영상을 이용한 모의 TRISO 핵연료 입자 코팅 층 두께 비파괴 측정)

  • Kim, Woong-Ki;Lee, Young-Woo;Park, Ji-Yeon;Park, Jung-Byung;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • TRISO(tri-isotropic)-coated fuel particle technology is utilized owing to its higher stability at a high temperature and Its efficient retention capability for fission products In the HTGR(high temperature gas-reeled reactor). The typical spherical TRISO fuel panicle with a diameter of about 1mm is composed of a nuclear fuel kernel and outer coating layers. The outer coating layers consist of a buffer PyC(pyrolytic carbon) layer, Inner PyC(1-PyC) layer, SiC layer, and outer PyC(O-PyC) layer Most of the Inspection Items for the TRTSO-coated fuel particle depend on destructive methods. The coating thickness of the TRISO fuel particle can be nondestructively measured by the X-ray radiography without generating radioactive wastel. In this study, the coaling thickness for the simulated TRISO-coated fuel particle with $ZrO_2$ kernel Instead of $%UO_2$ kernel was measured by using micro-focus X-ray radiography with micro-focus X-ray generator and flat panel detector The radiographic image was also enhanced by image processing technique to acquire clear boundary lines between coating layers. The coaling thickness wat effectively measured by applying the micro-focus X-ray radiography The inspection process for the TRISO-coated fuel particles will be improved by the developed micro-focus X-ray radiography and digital image processing technology.

Determination of La in $U_3Si/Al$ Spent Nuclear Fuel by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry (Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry에 의한 $U_3Si/Al$ 사용후핵연료 중 La의 분리 및 정량)

  • Han, Sun Ho;Choi, Kwang Soon;Kim, Jung Suk;Jeon, Young Shin;Park, Yang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.601-607
    • /
    • 2000
  • Lanthanum has been used as one of the burnup monitor in spent nuclear fuel. $U_3Si/Al$ spent nuclear fuel contains small amount of La in high concentration of U and Al. Therefore, chemical separation of La is required to remove matrix elements. At first, ion chromatography (IC) and inductively coupled plasma systems were installed in radiation shielded glove box to handle the radioactive samples. Retention behavior of uranium, aluminum, lanthanum and some interesting fission products (Sr, Zr, Y, Mo, Ru, Pd, Rh, Cs, Ba, Ce, Pr, Nd, Sm, Eu and Cd) was investigated using the CG10 column and ${\alpha}$-HiBA eluent. As all elements were eluted earlier than lanthanum in 0.2 M ${\alpha}$-HiBA eluent, a portion of U and Al was directly passed to waste using a three way valve between the column and the nebulizer. Thus it was possible to determine the lanthanum in a high concentration of U and Al matrix. Retention time of La was about 12 minutes in this separation condition. Optimum range for the determination of La in $U_3Si/Al$ spent nuclear fuel was $1-10{\mu}g/L$ (ppb) with this system and detection limit was $0.25{\mu}g/L$ in case of $200{\mu}L$ of sample volume.

  • PDF

External Symptoms of Tiger Puffer, Takifugu rubripes Infected with Scuticociliates and Distribution of the Scuticociliates in the Skin, Gill and Blood Vessel (스쿠티카섬모충에 감염된 자주복, Takifugu rubripes 외부증상과 피부, 아가미, 혈관내 충체의 분포)

  • Kang, Bub-Se;Go, Hwan-Bong;Kim, Sung-Jun;Na, Oh-Soo;Lee, Chi-Hoon;Kim, Sam-Yeon;Lee, Je-Hee;Lee, Young-Don
    • Journal of fish pathology
    • /
    • v.18 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This study investigated external symptoms, behavior characteristics and the distribution pattern of the scuticociliates in the skin, gill and blood vessel of the tiger puffer, Takifugu rubripes, infected with scuticociliates among tiger puffer cultured. The fish infected with scuticociliates did not show any external symptoms, such as change in body color or swimming behavior, in the early infection stage. However, they showed congestion, erosion, and ulcer on the skin and fin at advanced stages. They showed a turning movement, mainly stayed on the bottom, and swam with their mouths open at the surface of water. Some fish showed a sudden swimming movement of zigzag type. The scuticociliates were ovoid in shape and $20\times40{\mu}m$ in size. The scuticociliates had a contractile vesicle and a caudal cilium that ranged 10-12 ${\mu}m$, and reproduced by binary fission. Therefore the scuticociliates were identified as ciliated, belonging to class Hymenostomatia, order Scuticociliatida in morphogenetic character. The gills infiltrated with scuticociliates showed clubbed gill filament due to hypertrophy of gill lamella. Within the blood vessels, scuticociliates were observed one to ten individuals, depending on diameter of the blood vessels. Some of the scuticociliates were observed to have ingested erythrocytes.

Fission Track Zircon Ages of the Igneous Rocks in the Hamyang-Geochang Area, South Korea (함양(咸陽)-거창(居昌) 지역(地域), 화성암류(火成岩類)의 저어콘 휫션트랙 연대(年代))

  • Lee, Cheol-Lag;Lee, Yoon-Jong;Hayashi, Masao
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.187-191
    • /
    • 1993
  • FT dating of twelve zircon concentrates was carried out on the igneous rocks in the study area. The FT results from this study are younger than those of Rb-Sr or K-Ar by 20Ma, probably, due to the different closing temperature of the minerals. The obtained ages are $161{\pm}11Ma$ to $150{\pm}10Ma$ for the gneissose granodiorite and the Geochang granodiorite. It is estimated that the intermediate and basic rocks were formed at twice: one from $148{\pm}13Ma$ to $144{\pm}8Ma$, and the other from $122{\pm}8Ma$ to $104{\pm}7Ma$. In the case of the Gajo granite, the age is $96.5{\pm}5.7Ma$ to $95.4{\pm}6.4Ma$. Although considering the fact that the FT age is younger than the K-Ar age, it is likely that the magmatism in the Jurassic period was most intense in the area, which was associated with the Daebo orogeny.

  • PDF

A Numerical Model for Predicting the Radial Power Profile in CANDU-PHWR Fuel Pellet (CANDU-PHWR 핵연료 소결체의 반경방향 출력분포 수치모형)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.444-455
    • /
    • 1991
  • An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.

  • PDF

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.