Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.3.361

Regulation of Mitochondrial Homeostasis in Response to Endurance Exercise Training in Skeletal Muscle  

Ju, Jeong-sun (Department of Sports Science, the University of Suwon)
Publication Information
Journal of Life Science / v.27, no.3, 2017 , pp. 361-369 More about this Journal
Abstract
Mitochondrial homeostasis is tightly regulated by two major processes: mitochondrial biogenesis and mitochondrial degradation by autophagy (mitophagy). Research in mitochondrial biogenesis in skeletal muscle in response to endurance exercise training has been well established, while the mechanisms regulating mitophagy and the relationship between mitochondrial biogenesis and degradation following endurance exercise training are not yet well defined. Studies have demonstrated that endurance exercise training increases the expression levels of mitochondrial biogenesis-, dynamics-, mitophagy-related genes in skeletal muscle. However, the increased levels of mitochondrial biogenesis marker proteins such as Cox IV and citrate synthase, by endurance exercise training were abolished when autophagy/mitophagy was inhibited in skeletal muscle. This suggests that both autophagy/mitophagy plays an important role in mitochondrial biogenesis/homeostasis and the coordination between the opposing processes may be important for skeletal muscle adaptation to endurance exercise training to improve metabolic function and endurance exercise performance. It is considered that endurance exercise training regulates each of these processes, mitochondrial biogenesis, fusion and fission events and autophagy/mitophagy, ensuring a relatively constant mitochondrial population. Exercise training may also have contributed to mitochondrial quality control which replaces old and/or unhealthy mitochondria with new and/or healthy ones in skeletal muscle. In this review paper, the molecular mechanisms regulating mitochondrial biogenesis and mitophagy and the coordination between the opposing processes is involved in the cellular adaptation to endurance exercise training in skeletal muscle will be discussed.
Keywords
Autophagy; endurance exercise training; mitochondrion; mitophagy; skeletal muscle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chalkiadaki, A, Igarashi, M, Nasamu, A. S, Knezevic, J. and Guarente, L. 2014. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of Duchenne muscular dystrophy. PLoS Genet. 10, e1004490.   DOI
2 Goldman, S. J., Taylor, R., Zhang, Y. and Jin, S. 2010. Autophagy and the degradation of mitochondria. Mitochondrion 10, 309-315.   DOI
3 Gomes, L. C., Di Benedetto, G. and Scorrano, L. 2011. During autophagy mitochondrial elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589-598.   DOI
4 Hanna, R. A., Quinsay, M. N., Orogo, A. M., Giang, K. and Rikka, S., et al. 2012. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094-19104.   DOI
5 Irrcher, I., Liubicic, V. and Hood, D. A. 2009. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am. J. Physiol. Cell Physiol. 296, C116-123.   DOI
6 Twig, G., Elorza, A., Molina, A. J., Mohamed, H. and Wikstrom, J. D., et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO 27, 433-446.   DOI
7 Vainshtein, A. and Hood, D. A. 2016. The regulation of autophagy during exercise in skeletal muscle. J. Appl. Physiol. 120, 664-673.   DOI
8 Warburton, D. E., Nicol, C. W. and Bredin, S. S. 2006. Health benefits of physical activity: the evidence. CM AJ. 174, 801-809.
9 Wright, D. C., Han, D. H., Garcia-Roves, P. M., Geiger, P. C. and Jones, E. T., et al. 2007. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J. Biol. Chem. 282, 194-199.   DOI
10 Xiao, B., Heath, R., Saiu, P., Leiper, F. C. and Leone, P., et al. 2007. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496-500.   DOI
11 Yan, Z., Lira, V. A. and Greene, N. P. 2012. Exercise training-induced regulation of mitochondrial quality. Exerc. Sport Sci. Rev. 40, 159-164.
12 Gerhart-Hines, Z., Rodgers, J. T., Bare, O., Lerin, C. and Kim, S. H., et al. 2007. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26, 1913-1923.   DOI
13 Menzies, K. J., Singh, K., Saleem, A. and Hood, D. A. 2013. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem. 288, 6968-6979.   DOI
14 Chan, D. C. 2012. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265-287.   DOI
15 Davies, S. P., Helps, N. R., Cohen, P. T. and Hardie, D. G. 1995. 5'-AMPK inhibits dephosphorylation, as well as promoting phosphorylation, of the AMPK-activated protein kinase: studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421-425.   DOI
16 Drake, J. C., Wilson, R. J. and Yan, Z. 2016. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J. 30, 13-22.   DOI
17 Geisler, S., Holmstrom, K. M., Skujat, D., Fiesel, F. C. and Rothfuss, O. C., et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119-131.   DOI
18 Klionsky, D. J. 2007. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931-937.   DOI
19 Jin, S. M., Lazarou, M., Wang, C., Kane, L. A. and Narendra, D. P., et al. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933-942.   DOI
20 Ju, J. S., Jeon, S. I., Park, J. Y., Lee, J. Y. and Lee, S. C., et al. 2016. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition. J. Physiol. Sci. 66, 417-430.   DOI
21 Pilegaard, H., Saltin, B. and Neufer, P. D. 2003. Exercise induces transient transcriptional activation of the PGC-1 alpha gene in human skeletal muscle. J. Physiol. 546, 851-858.   DOI
22 Mizushima, N., Ohsumi, Y. and Yoshimori, T. 2002. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421-429.   DOI
23 Palikaras, K. and Tavernarakis, N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Geront. 56, 182-188.   DOI
24 Perry, C. G., Lally, J., Holloway, G. P. and Heigenhauser, G. J., et al. 2010. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J. Physiol. 588, 4795-4810.   DOI
25 Puigserver, P., Adelmant, G., Wu, Z., Fan, M. and Xu, J., et al. 1999. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286, 1368-1371.   DOI
26 Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M. and Garcia-Arencibia, M., et al. 2010. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90, 1383-1435.   DOI
27 Safdar, A., Little, J. P., Stokl, A. J., Hettinga, B. P. and Akhtar, M., et al. 2011. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J. Biol. Chem. 286, 10605-10617.   DOI
28 Tam, B. T., Pei, X. M., Yu, A. P., Sin, T. K. and Leung, K. K., et al. 2015. Autophagic adaptation is associated with exercise-induced fibre-type shifting in skeletal muscle. Acta. Physiol. 214, 221-236.   DOI
29 Levine, B. and Klionsky, D. J. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 6, 463-477.   DOI
30 Konopka, A. R., Suer, M. K., Wolff, C. A. and Harber, M. P. 2014. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 371-378.   DOI
31 Lira, V. A., Okutsu, M., Zhang, M., Greene, N. P. and Laker, R. C, et al. 2013. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 27, 4184-4193.   DOI
32 Little, J. P., Safdar, A., Benton, C. R. and Wright, D.C. 2011. Skeletal muscle and beyond: the role of exercise as mediator of systemic mitochondrial biogenesis. Appl. Physiol. Nutr. Metab. 36, 598-607.   DOI
33 Masiero, E., Agatea, L., Mammucari, C., Blaauw, B. and Loro, E., et al. 2009. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507-515.   DOI
34 McConell, G. K., Ng, G. P., Phillips, M., Ruan, Z. and Macaulay, S. L., et al. 2010. Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. J. App.l Physiol. 108, 589-595.