• Title/Summary/Keyword: Fishing gear deployment

Search Result 4, Processing Time 0.019 seconds

A study on the change of the depth and catch of hairtail trolling lines (갈치 끌낚시 어구의 수심변화 및 어획량 시험)

  • KIM, Mun-Kwan;PARK, Su-Hyeon;KANG, Hyeong-Cheol;PARK, Yong-Seok;AN, Young-Il;LEE, Chun-Woo;PARK, Su-Bong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.107-115
    • /
    • 2018
  • In this study, we tested Japanese trolling lines in the Jeju fishery. This fishery simulates the natural marine environment with many seabed rocks, and has been redesigned and manufactured it to be suitable for the Jeju fishery. In order to ensure that the trolling lines were deployed at the inhabitation depth of hairtails, the conditions required for the fishing gear to reach the target depth were determined for use during the experiment. The experimental test fishing was conducted at the depth of 120 m water in front of Jeju Seongsanpo and in the offshore area of Jeju Hanlim. The fishing gear used in the test fishing is currently used in a variety of field operations in Japan. However, several problems were identified, such as twisting of the line during its deployment and excessive sinking of the main line. The fishing gear was, therefore, redesigned and manufactured to be more suitable for the Jeju fishery environment. For the fishing gear to accurately reach the target depth, depth loggers were installed at the starting point of the main line and at the 250 m and 340 m points of the line. Depth and time were recorded every 10 seconds. According to the daytime positioning of hairtails in the lower water column, the target depth of the fishing gear was set at 100-110 m, which was 10-20 m above the sea floor. At a speed of 1.9 knots and with a 9 kg sinker attached, the main fishing line was deployed and catch yields at depths of 100 m, 150 m and 180 m were recorded and analyzed. When the 180 m main line was fully deployed, the time for the hairtail trolling lines to arrive at the appropriate configuration had to be 5 minutes. At this time, the depth of the fishing gear was 16-23 m above the sea floor, in accordance with the depths at which the hairtails were during the day. In addition, in order to accurately place the fishing gear at the inhabitation water depth of hairtails, the experimental test fishing utilized the results of the depth testing that identified the conditions required for the fishing gear to reach the target depth, and the result was a catch of up to 97 kg a day.

Analysis of the risk factors for offshore gillnet fisheries in the floating offshore wind farms based on AHP technique (AHP 기법을 이용한 부유식 해상 풍력 단지 내 근해자망어업 위험 요인 분석)

  • Jong-Kap AHN;You-Jin PARK;Yu-Jin JEONG;Young-Su AN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.354-361
    • /
    • 2023
  • In this study, the AHP (analytic hierarchy process) technique was used to analyze the risk of expected risk factors and fishing possibilities during gillnet fishing within the floating offshore wind farms (floating OWF). For this purpose, the risks that may occur during gillnet fishing within the floating offshore wind farms were defined as collisions, entanglements, and snags. In addition, the risk factors that cause these risks were classified into three upper risk factors and ten sub risk factors, and the three alternatives to gillnet fishing available within the floating OWF were classified and a hierarchy was established. Lastly, a survey was conducted targeting fisheries and marine experts and the response results were analyzed. As a result of the analysis, among the top risk factors, the risk was the greatest when laying fishing gear. The risk of the sub factors for each upper risk was found to be the highest at the berthing (mooring), the final hauling of fishing net, and the laying of the bottom layer net. Based on the alternatives, the average of the integrated risk rankings showed that allowing full navigation/fisheries had the highest risk. As a result of the final ranking analysis of the integrated risk, the overall ranking of allowing navigation/fisheries in areas where bottom layer nets were laid was ranked the first when moving vessels within the floating OWF was analyzed as the lowest integrated risk ranking of the 30th at the ban on navigation/fisheries. Through this, navigation was analyzed to be possible while it was analyzed that the possibility of gillnet fishing within the floating OWF was not high.

Offshore stow net modeling and analysis of behavior using numerical methods (수치해석을 이용한 근해안강망 어구 모델링과 거동분석)

  • JANG, Yong-Suk;LEE, Chun-Woo;CHOI, Kyu-Suk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.283-291
    • /
    • 2021
  • The Korean stow net is a fishing method that utilizes the changing direction of the net entrance with the tidal current. This study attempted to obtain basic data from the recent offshore stow net fisheries to improve the gear by analyzing the dynamic behavior of the nets affected by current speed and direction using computer simulations. A numerical calculation was performed at a current speed of 0.5 knot between 2.5 knot at each 0.5 knot. The time taken for the gear opening was the longest from 0.5 knot at 1,500 seconds and the shortest from 2.5 knot at 450 seconds in the simulations. In all cases, the net width and tension at net deployment gradually decreased as the current speed decreased. However, the net height tended to increase inversely proportional to the current speed. During the net rotation, the net height was maintained at all cases. The net width and tension fluctuated, but the regularity was very low. In this study, the calculated simulation data showed that the opening efficiency decreased proportional to the current speed. The opening efficiency is related to the catching efficiency; therefore, it is necessary to improve the gear to enhance its opening efficiency.

Test of Communication Distance Measurement of Fishing Gear Automatic System Based on Private LoRa (Private LoRa 기반 어구 자동식별 시스템의 거리 측정 시험)

  • Lee, Seong-Real;Kim, Se-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • Since the ocean accounts for 70.8 percent of the earth's surface, the success of IoT technology in the marine industry is to collect information from devices placed in a wider range. LPWA is a feature with a wide range of communication and is very suitable for deployment in the ocean. In this paper, the real-sea performance distance experiment was carried out based on Private LoRa, a key technology for executing the electronic phrase real-name system. A private LoRa module based on sx1276 was developed, and Gateway was developed to transfer data received by private LoRa to the server using SKT Cat. M1. After installing gateways at 599 meters above sea level and experimenting with data transmission and reception at 25 km, 40 km and 60 km, we were able to see that the communication success rate was obtained to be 96.1%. 97.1% and 96.2% respectively.