• Title/Summary/Keyword: Fisher information

Search Result 258, Processing Time 0.029 seconds

Combining Independent Permutation p Values Associated with Mann-Whitney Test Data

  • Um, Yonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.99-104
    • /
    • 2018
  • In this paper, we compare Fisher's continuous method with an exact discrete analog of Fisher's continuous method from permutation tests for combining p values. The discrete analog of Fisher's continuous method is known to be adequate for combining independent p values from discrete probability distributions. Also permutation tests are widely used as alternatives to conventional parametric tests since these tests are distribution-free, and yield discrete probability distributions and exact p values. In this paper, we obtain permutation p values from discrete probability distributions using Mann-Whitney test data sets (real data and hypothetical data) and combine p values by the exact discrete analog of Fisher's continuous method.

Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis (집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식)

  • Yeom, Seok-Won;Lee, Dong-Su;Son, Jung-Young;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1111-1116
    • /
    • 2009
  • In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.

Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis (포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.64-69
    • /
    • 2008
  • This paper discusses low resolution face recognition using the photon-counting linear discriminant analysis (LDA). The photon-counting LDA asymptotically realizes the Fisher criterion without dimensionality reduction since it does not suffer from the singularity problem of the fisher LDA. The linear discriminant function for optimal projection is determined in high dimensional space to classify unknown objects, thus, it is more efficient in dealing with low resolution facial images as well as conventional face distortions. The simulation results show that the proposed method is superior to Eigen face and Fisher face in terms of the accuracy and false alarm rates.

Kernel Fisher Discriminant Analysis for Natural Gait Cycle Based Gait Recognition

  • Huang, Jun;Wang, Xiuhui;Wang, Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.957-966
    • /
    • 2019
  • This paper studies a novel approach to natural gait cycles based gait recognition via kernel Fisher discriminant analysis (KFDA), which can effectively calculate the features from gait sequences and accelerate the recognition process. The proposed approach firstly extracts the gait silhouettes through moving object detection and segmentation from each gait videos. Secondly, gait energy images (GEIs) are calculated for each gait videos, and used as gait features. Thirdly, KFDA method is used to refine the extracted gait features, and low-dimensional feature vectors for each gait videos can be got. The last is the nearest neighbor classifier is applied to classify. The proposed method is evaluated on the CASIA and USF gait databases, and the results show that our proposed algorithm can get better recognition effect than other existing algorithms.

Fisher Information and the Kullback-Leibler Distance in Concomitants of Generalized Order Statistics Under Iterated FGM family

  • Barakat, Haroon Mohammed;Husseiny, Islam Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.389-405
    • /
    • 2022
  • We study the Fisher Information (FI) of m-generalized order statistics (m-GOSs) and their concomitants about the shape-parameter vector of the Iterated Farlie-Gumbel-Morgenstern (IFGM) bivariate distribution. We carry out a computational study and show how the FI matrix (FIM) helps in finding information contained in singly or multiply censored bivariate samples from the IFGM. We also run numerical computations about the FIM for the sub-models of order statistics (OSs) and sequential order statistics (SOSs). We evaluate FI about the mean and the shape-parameter of exponential and power distributions, respectively. Finally, we investigate the Kullback-Leibler distance in concomitants of m-GOSs.

Development of Discriminant Analysis System by Graphical User Interface of Visual Basic

  • Lee, Yong-Kyun;Shin, Young-Jae;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.447-456
    • /
    • 2007
  • Recently, the multivariate statistical analysis has been used to analyze meaningful information for various data. In this paper, we develope the multivariate statistical analysis system combined with Fisher discriminant analysis, logistic regression, neural network, and decision tree using visual basic 6.0.

  • PDF

Subject Independent Classification of Implicit Intention Based on EEG Signals

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.12-16
    • /
    • 2016
  • Brain computer interfaces (BCI) usually have focused on classifying the explicitly-expressed intentions of humans. In contrast, implicit intentions should be considered to develop more intelligent systems. However, classifying implicit intention is more difficult than explicit intentions, and the difficulty severely increases for subject independent classification. In this paper, we address the subject independent classification of implicit intention based on electroencephalography (EEG) signals. Among many machine learning models, we use the support vector machine (SVM) with radial basis kernel functions to classify the EEG signals. The Fisher scores are evaluated after extracting the gamma, beta, alpha and theta band powers of the EEG signals from thirty electrodes. Since a more discriminant feature has a larger Fisher score value, the band powers of the EEG signals are presented to SVM based on the Fisher score. By training the SVM with 1-out of-9 validation, the best classification accuracy is approximately 65% with gamma and theta components.

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

A study on Face Image Classification for Efficient Face Detection Using FLD

  • Nam, Mi-Young;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.106-109
    • /
    • 2004
  • Many reported methods assume that the faces in an image or an image sequence have been identified and localization. Face detection from image is a challenging task because of variability in scale, location, orientation and pose. In this paper, we present an efficient linear discriminant for multi-view face detection. Our approaches are based on linear discriminant. We define training data with fisher linear discriminant to efficient learning method. Face detection is considerably difficult because it will be influenced by poses of human face and changes in illumination. This idea can solve the multi-view and scale face detection problem poses. Quickly and efficiently, which fits for detecting face automatically. In this paper, we extract face using fisher linear discriminant that is hierarchical models invariant pose and background. We estimation the pose in detected face and eye detect. The purpose of this paper is to classify face and non-face and efficient fisher linear discriminant..

  • PDF

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.