• Title/Summary/Keyword: Fish habitat suitability

Search Result 58, Processing Time 0.029 seconds

Forecasting Fish Communities in River Networks

  • Rashleigh, Brenda;White, Denis;Ebersole, Joe L.;Barber, Craig;Boxall, George;Brookes, Allen
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.150-157
    • /
    • 2012
  • Fish communities in river networks provide significant ecosystem services that will likely decline under future land use and climate change. We developed a model that simulates the consequences to multiple populations of one or more fish species-a meta-community-from multiple stressors across a river network. The model is spatially-explicit and age-structured, with three components: habitat suitability; population dynamics, including species interactions; and movement across a spatial network. Although this model is simple, it can form the basis of fisheries assessments and may be incorporated into an integrated modeling system for watershed management and prediction.

Estimation of Ecological Instream Flow Considering the River Characteristics and Fish Habitat in the Downstream of Yongdam Reservoir (용담댐 하류의 어류서식처를 고려한 생태학적 유지유량 산정)

  • Jang, Chang-Lae;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.374-381
    • /
    • 2009
  • Ecological instream flow was quantitatively calculated based on the river characteristics and fish habitat in the downstream of Yongdam Reservoir. The river bed and width did not change from 1988 before the am construction to 2004 after the dam construction, but the bed sediment size was attenuated a little in 2004. According to result that investigate fishes, 4 family 11 species including Acheilognathus koreensis were collected. Among them, Zacceo koreanus of cyprinidae was dominant, and Coreoleuciscus splendidus did sub-dominant. The habitat suitability indexes were estimated for two fish species Zacco koreanus and Coreoleuciscus splendidus using Physical Habitat Simulation System (PHABSIM) considering the river characteristics. In Gamdong and Daeti sites, the optimal ecological flow for Z. koreanus and C. splendidus were $13.90\sim12.60\;m^3\;s^{-1}$ and $15.50\sim11.60\;m^3\;s^{-1}$, respectively. In contrast, the optimal flow for the two species in Bunam site were $7.00\;m^3\;s^{-1}$. The ecological instream flow in the downstream of Yongdam Reservoir was between normal and high flow rate.

Simulation of Change in Physical Habitat of Fish Using the Mobile Bed Model in a Downstream River of Dam (댐 하류 하천에서 하상변동 모델을 이용한 어류 물리서식처 변화 모의)

  • Kim, Seung Ki;Choi, Sung-Uk
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.317-323
    • /
    • 2015
  • This study investigated the impact of the morphological change on a physical fish habitat in the downstream reach of a dam using long-term mobile bed simulation. The quasi-steady model was used for hydraulic simulation and the habitat suitability index model was applied for physical habitat simulation. For simulating long-term morphological change of the stream bed, The Exner equation was used. Sorting of bed material was also considered. The results of simulation showed that erosion and armoring process occurred in a reach downstream of the dam and change of physical habitat for Zacco platypus followed. These results indicate that channel morphology and substrate conditions effected the physical habitat for considering long-term investigation.

Impact on Fish Community by Restoration of Ecological Waterway using Physical Habitat Simulation (물리서식처 분석을 통한 생태 물길 복원이 다양한 군집종에 미치는 영향)

  • Choi, Heung Sik;Choi, Jonggeun;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study performed the impact of ecological waterway on fish community in a reach of the Dal River, Korea. Fish monitoring revealed that 9 fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, Zacco koreanus, Pungtungia herzi, Acheilognathus yamatsutae, Rhinogobius brunneus, Tanakia signifer, Gobiobotia macrocephala, and Pseudopungtungia tenuicorpus, and account for 95% of the total fish community. The River2D model was used for the computation of the flow and the HSI model for the habitat simulation. The restoration of the waterway performed through the small dam removal, the formation of the pool-riffle structure, and the change of the bed elevation and width. Simulation results indicated that the restoration of the ecological waterway effects significantly increased by about 16% for the WUA (Weighted Usable Area) of the total fish community in optimal ecological flow conditions ($Q=7.0m^3/s$). The restoration of the ecological waterway is more advantageous to fish community.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

The Estimation of Ecological Flow Recommendations for Fish Habitat (하천의 어류 서식환경을 고려한 생태학적 추천유량 산정)

  • Sung, Young-Du;Park, Bong-Jin;Joo, Gea-Jae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.545-554
    • /
    • 2005
  • The detailed interdisciplinary surveys were conducted on the pattern of habitat use of dominant fishes during the spawning and adult stage. The hydraulic parameters of the depth and velocity, discharge, substrate cover streams, and distribution of fish in the Yeonggang, WiCheon, HoeCheon, GeochangwiCheon, CheongdoCheon, DanjangCheon (the Nakdong River Basin) were measured. The Habitat Suitability Criteria was developed for the two fish species (Zacco Platypus and Zacco Temmincki) and life stages(spawning and adult), habitat conditions (depth, velocity and covet). The Physical Habitat Simulation of the Instream Flow Incremental Methodology was applied to calculate for optimal flow and the ecological flow recommendation was proposed by choosing the largest one in the optimal flow. The ecological flow recommendation was $5.0\;m^3/s{\sim}10.0\;m^3/s$ (e.g., $6.5\;m^3/s$ in the NaeseongCheon). Also, the ecological flow recommendations were compared with the existing ecological flow and flow duration analysis.

Numerical Investigations of Physical Habitat Changes for Fish induced by the Hydropeaking in the Downstream River of Dam (댐 하류 하천에서 발전방류로 인한 어류 물리서식처 변화 수치모의)

  • Kang, Hyeongsik;Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.211-217
    • /
    • 2010
  • This paper presents numerical investigations of the physical habitat changes induced by the hydropeaking in the downstream river of dam. For the two-dimensional ecohydraulic simulations, River2D model is used. Pirami (Zacco platypus) is selected as the target fish for investigating the impact of the hydropeaking. For validation of the model, the water surface elevations are simulated with two different water discharges. The computed results are compared with field data in the literature, and the result shows that the model successfully simulates the water flows. The weight usable area (WUA) of Pirami with the life cycle and the composite suitability index with different water discharges are computed and discussed. The results show that habitat for Pirami appears to be best in the bend region downstream of the dam. The discharge of the maximum WUA for adult Pirami is computed to be about 9 $m^3/s$. Also, the WUA computed in a condition of hydropeaking during seven days are presented. The averaged discharge of the hydropeaking appears to be about 20% larger than the drought flow, but the WUA by the hydropeaking is computed to be 60-100% smaller. This result shows that the hydropeaking reduces quantity of habitat available to fish.

Stable Channel Design for Physical Disturbance Reduction and Analysis of Habitat Suitability (물리적 교란 저감을 위한 안정하도의 설계와 서식적합도 분석)

  • Lee, Woong Hee;Moon, Hyong Geun;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • This study analyzed the aspect of bed change according to the stable channel design on the Wonju River to quantitatively evaluate habitat suitability (HS). According to the result of evaluating stable channel of object section in the Wonju River, 17 sections among total 20 sections were stable and 3 sections were unstable. Physical disturbance improvement evaluation (PDIE) was the range average showed good disturbance condition with a range average of 112.17 points. Habitat suitability index of Zacco Koreanus, the most dominant species of the Wonju River, was used for analysis of physical habitat for fish. According to the physical habitat analysis result, HS was 0.16 and weighted usable area (WUA) was $347.68m^2$. The methods of improving/introducing/removing structures and dredging stream channel were used for stable channel design of unstable channel, and analyzed PDIE according to the aspect of bed change and changes in habitat suitability. Stable channel design was possible in 19 sections in times of structures improvement/introduction/removal, and PDIE was 117.53 points, HS was 0.14 points, and WUA was $313.37m^2$. Stable channel design was possible in all 20 sections when dredging the stream channel. PDIE was 116.50 points, HS was 0.16, and WUA was $332.14m^2$. Therefore, this study obtained channel design measures that can improve physical soundness and stability of the Wonju River, and it was analyzed that it will have no impact on changes of physical disturbance and physical habitat. Furthermore, this study analyzed velocity and depth of each section and appearance frequency of riffle and pool to analyze correlation between physical disturbance and physical habitat. According to the analysis result, it was identified that the analysis of riffle and pool showed similar result as the evaluation result of physical habitat.

Estimation of Instream Flow for Fish Habitat using Instream Flow Incremental Methodology(IFIM) for Major Tributaries in Han River Basin (유지유량 증분 방법론(IFIM)에 의한 한강수계 주요 지류에서의 어류서식 필요유량 산정)

  • Lee, Joo Heon;Jeong, Sang Man;Lee, Myung Ho;Lee, Yong Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.153-160
    • /
    • 2006
  • To recommend ecological flow for major tributaries in Han River basin, the Instream Flow Incremental Methodology (IFIM) have been applied. In particular physical habitat simulation using PHABSIM have been selected for microhabitat variables and QUAL2E model have been used to implement macrohabitat simulation. Habitat Suitability Criteria (HSC) for different life stages in accordance with different hydraulic variables (depth and velocity) have been presented by the field surveying data. We review IFIM procedures and discuss limitations of habitat simulation with specific reference to Han River basin. The results of this research can be used as reference flow for estimation of instream flow in Han River.

A Study on Riparian Habitats for Amphibians Using Habitat Suitability Model (서식지적합성 모형을 이용한 수변지역 양서류 서식지 분석)

  • Jeong, Seunggyu;Seo, Changwan;Yoon, Jaehyun;Lee, Dong Kun;Park, Jonghoon
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.175-189
    • /
    • 2015
  • The objective of this study was to analyze characteristics of distribution of amphibian species and the affecting ecological factors. For the study, habitat environment factors were determined and applied to a habitat suitability model for the data collected from the Seom River in Hoengseong County and Wonju City, Gangwon Province, Korea between March 2013 to October 2013. The analyzed amphibian species were Rana nigromaculata, Hyla japonica, Rana dybowski, and Rana rugosa Temminck and Schlegel, and a logistic regression model was used with the pseudo-absence data. The result of the model analysis suggests that the major factors for Rana nigromaculata are distance to vegetation and rock and that for Hyla japonica is waterway. Rana dybowski and Rana rugosa Temminck and Schlegel have similar habitat characteristics, but the latter is shown to be dominant due to its wider habitat preference. According to the species richness model, the analyzed amphibian species are shown to have tendency to move between valleys or streams. This study quantitatively analyzed habitat environment characteristics using species distribution model, however, there is a limitation in terms of analysis on food factor and connectivity with other species. Combined with additional density or habitat analysis on birds or fish, this study can lead to more comprehensive analysis on biological environment factors.