• Title/Summary/Keyword: Fish habitat

Search Result 408, Processing Time 0.024 seconds

Fish Assemblages by SCUBA Observations in the Water off Tongyeong, Korea (잠수관찰을 통한 경남 통영 연안의 어류상)

  • Gwak, Woo-Seok;Lee, Seung-Hwan;Lee, Yong-Deuk
    • Korean Journal of Ichthyology
    • /
    • v.28 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • Species composition and distribution characteristics of fish were determined by monthly underwater visual census from September. 2013 to August, 2014 at Yeongunri off Tongyeong, Korea. The study area was divided into five habitat types by depth and substrate: (1) sand bottom as depth of 0~2 m, (2) seagrass bed of 2~5 m, (3) rocky outcrop of 0~2 m, (4) rocky bottom of 2~5 m, (5) sandy mud bottom of 5~8 m. A total of 1,673 individuals belonging to 43 species in 26 families were recorded during the study period. The number of species tended to decrease after October, 2013 and increase from March, 2014 showing the highest number in October (autumn), and lowest in January (winter). In terms of the number of species, Gobiidae was the most dominant family (7 species), followed by Scorpaenidae (4 species). Embiotocidae was the most abundant (26.1% in total number of individuals), followed by Scorpaenidae (19.9%) and Gobiidae (19.3%). The dominant species were Sebastes inermis (19.2%), Ditrema temminckii (13.1%), and Neoditrema ransonnetii (12.9%). The number of species and abundance were relatively high at the depth between 2 and 5 m on seagrass bed and rocky bottom, whereas they were lower at the depth between 0 and 2 m on the sand bottom, suggesting that seagrass beds and rocky bottoms provided the diverse habitats for various fish species in this sea.

The Characterization of Fish Communities in Urban Streams of the Busan Metropolitan City and Suggestions of Stream Restoration (부산시 도시하천의 어류군집과 하천복원을 위한 제안)

  • Yoon, Ju-Duk;Jang, Min-Ho;Oh, Dong-Ha;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.303-317
    • /
    • 2007
  • The fish community of small freshwater ecosystems gets easily disturbed by direct or indirect human induced disturbances during the period of urbanization. Urbanization is one of factors that generate changes in stream and influences fish fauna in developed countries. This study was conducted in Busan Metropolitan City from 2001 to 2004. In order to investigate the fish community, the city was divided into 3 parts, eastern, central and western. A total of 3,206 individuals of 46 species from 19 families were collected from 55 sites. The dominant species was Rhynchocypris oxycephalus, whereas Zacco temminckii was the subdominant species. Cluster analysis was conducted using primary freshwater fish species collected from each stream. As a result of the analysis, study sites were well differentiated into 3 parts. Two species of Z. temminckii and R. oxycephalus represented the upper part of the stream and Carassius cuvieri, Acheilognathus rhombeus, Hemiculter eigenmanni and Micropterus salmoides represented the middle and lower parts of the stream. When compared with previous studies, fish community of the eastern part of the Busan city where urbanization is in progress, showed similar patterns to the central part. At the time of the habitat restoration of fish fauna in stream, appropriate selection of fish species should be made through analysis of stream character and biogeographic distribution of fish, and long-term monitoring is also needed for sustaining the management of fish fauna.

The Evaluation of Potential Invasive Species in the Gangneungnamdae Stream in Korea using a Fish Invasiveness Screening Kit (FISK (Fish Invasiveness Screening Kit)를 이용한 강릉남대천의 잠재적 침습 이입종 평가)

  • Kim, Jeong Eun;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.73-81
    • /
    • 2018
  • This study was conducted to understand the current status of the translocated species using a precede study and a model to evaluate the potential invasiveness that could adversely affect the aquatic ecosystem in the Gangneungnamdae Stream. A total of 12 translocated species were investigated and identified from 9 sites in a precede study, and steadily increased since 1982. For the study, which utilized research based on the total FISK (Fish Invasivenss Screening Kit) scores, all of the non-native fishes in Gangneungnamdae Stream were classified into two groups: namely as a high and a medium risk of becoming invasive. It was determined that there were two species (Zacco platypus and Pseudorasbora parva) that were determined to have posed the highest risk. The study determined that the mean scores were shown to have ranged from $3.06({\pm}0.16)-3.42({\pm}0.13)$. Consequently, the habitat analysis showed that the determined QHEI (Qualitative Habitat Evaluation Index) values in the stream averaged 146 (88-171), indicating that an optimal habitat condition did exist in that locale. It can be inferred that compared to land use in the surrounding watersheds, the QHEI values and frequency of translocated species showed the lower the altitude of stream, the QHEI values were decreased and in case of land use pattern, a noted decreased forest and grassland area, and gradually increased urbanized area was seen to exist in the region. The correlation between the fish assemblage, QHEI, land use pattern of surrounding watershed and number of translocated species was identified and analyzed when the stream altitude decreased, and the number of species was increased (r= - 0.782, p=0.0127), the number of species was decreased (r= - 0.737, p=0.0234), and finally when the QHEI values were decreased, it was noted that the urbanized area was increased (r=0.292, p=0.446). In the case of the number of translocated species, when the number of translocated species was increased, the associated urbanized area was increased.

Biological Water Quality Assessments Using Fish Assemblage in Nakdong River Watershed (어류를 이용한 낙동강 수계의 생물학적 수질 평가)

  • Choi, Ji-Woong;Lee, Eui-Haeng;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.254-263
    • /
    • 2007
  • The objective of this study was to evaluate biological water quality using fish assemblages in Nakdong River watershed. We selected 6 sites along the main axis of the river and evaluated the Index of Biological Integrity (IBI), Qualitative Habitat Evaluation Index (QHEI) and chemical water quality during July 2004${\sim}$March 2006. For the study, we applied the 10 metric IBI model, which was developed for national biological water quality criteria. Nakdong River's IBI value averaged 20.8 (n=14) during the study which means poor biological water quality. Physical habitat health at all sites, based on QHEI model, was measured as 110, indicating fair${\sim}$good condition. The habitat health varied depending on the locations sampled. Habitat health in sites 1 and 6 was judged as good, while the health in sites 3 and 4 was $poor{\sim}fair$. Especially, we found the metric values of $M1{\sim}M5$, M7, M10 were low in sites 3 and 4 compared to other sites. In these sites, thus, habitat restoration of substrate composition, riffles, and bank vegetation may be necessary. In the mean time, chemical water quality, based on BOD, COD, TSS, and nutrients, had no large spatial and temporal variations. Overall data analysis indicated that site 3 was largely impacted by the polluted-tributary, Keumho River and the downstreams showed better water quality due to the dilution of the polluted river water by Nam River and Hwang River.

Seasonal Dynamics of Fish Fauna and Compositions in the Gap Stream Along With Conventional Water Quality

  • Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.503-510
    • /
    • 2007
  • The purposes of the study were to analyze the seasonal effects on the fish fauna and compositions including trophic guilds and tolerance guilds. For the study, we collected fish samples twice in June as premonsoon period and early September 2007 as monsoon periods in five sampling sites of the Gap Stream, and then biological oxygen demand (BOD), nutrients (TN, TP) and suspended solids (SS) were compared with the guild data along the gradient of upstream-to-downstream. Chemical water quality, based on BOD, TP, and TN degraded gradually from the upstream to downstream reach and there were about 3 fold difference between S1 and S5. Water quality was worse in the premonsoon than the monsoon, and the heavy monsoon resulted in a dilution of the polluted river by rain water, especially, in the downstream reach. Total number of fish species, based on the catch per unit effort (CPUE), showed a distinct difference between the two seasons; 30 species were sampled in premonsoon, but 23 species were sampled in the monsoon, indicating a seasonal difference in the fish fauna. Tolerant species dominated the fish community (48.3%) in the stream, and the proportions prior to physical disturbance by the monsoon rain were evidently greater in the downstream reach than the upstream. This reflected the characteristics of urban stream polluted by nutrient enrichment as shown in the BOD and TP values. Sensitive species in the premonsoon decreased from the gradient of upstream-to-downstream reach. Such seasonal modifications in the trophic and tolerance guilds were evident. In the analysis of trophic guild and habitat guild, during the premonsoon the proportion of insectivore and riffle-benthic species were largely greater in the upstream reach than the downstream, whereas the proportions were opposite along the gradient of the stream in monsoon. Thus, the patterns of chemical water quality along the longitudinal gradients reflected the premonsoon conditions of insectivores and tolerant species, indicating that summer monsoon data of fish may not match with water quality due to large physical disturbance by flow regime. Seasonal monsoon in this region as well as the chemical pollution may act as a key role influencing the fish compositions of trophic and tolerance guilds and fauna. The data collected during the premonsoon rather than the monsoon, thus, may be better predictor for a diagnosis of stream health conditions.

Biological Control of Malaria Vector (Anopheles sinensis Wied.) by Combined Use of Larvivorous Fish (Aplocheilus latipes) and Herbivorous Hybrid (Tilapia mossambicus niloticus) and Herbivorous Hybrid (Tilapia mossambicus niloticus) in Rice Paddies of Korea (천적포식어 (Aplocheilus latipes)와 식식성 어류 (Tilapia mossambicus niloticus) 의 병합적 처리에 의한 논에 서식하는 말라리아 매개모기 (Anopheles sinensis Wied.) 의 생물학적 방제)

  • 유효석;이준학
    • Korean journal of applied entomology
    • /
    • v.28 no.4
    • /
    • pp.229-236
    • /
    • 1989
  • A combined field release of indigenous larvivoroug fish (Aplocheilus latipes) and hybrid herbivore (Tilapia mossambicus miloticus) was conducted to determine the effectiveness of biological control, in particular, against malaria vector (anopheles sinensis), breeding in weedy habitat of rice fields at the University rice paddies at Suwon during the period of June through September in 1988. A combined fish introduction at the release rate of 2.0 fish per $M^{2}$ for Aplocheilus and 1-pair $10M^{2}$ water surface for Tilapia resuited in 70.8% Anopheles larval reducton in a week period, the rates of rontrol increased to 73. 5% and 80.2% in 4th and 5th week respectively after the fish introdurtion, maintaining mosquito suppression in range of 80~82% control after the 5th week against Anopheles and Culex spp. combined. In a single fish treatment with Aplocheilus at 2.0 $fish/M^{2}$ release rate, Anopheles larval reduction ranged on the average 51.4~56.5%in 4 wrek period which was later integratpd with B.t.i. (Rl53.78) treatment at 1.0 kg/ha dosage rate to suppress vector mosquito population down and the the results was compared with that of combined fish introdurtion.

  • PDF

Ecological Health Assessments on Stream Order in Southern Han River Watershed and Physical Habitat Assessments (남한강 수계에서 하천차수에 따른 생태건강도 평가 및 지점별 물리적 서식지 평가)

  • Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.440-447
    • /
    • 2013
  • The ecological health, based on the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) was evaluated in 10 stream sites of Southern Han River. Eleven parameters of 12 parameters (Karr 1981) were modified for the application of regional Korean circumstance. The ecological health, based on IBI grade, was in "good condition" and the IBI score ranged from 33 to 47. Nine parameters of the original 12-parameter metrics in QHEI model (Plafkin et al. 1989) were applied in the habitat assessment. The mean QHEI model values were judged as "partially supporting" and ranged from 75 (non-supporting) to 109 (supporting). Comparative analyses revealed that values of IBI and QHEI models were greater in Gj stream than Ig- and Dn streams. The analysis of fish compositions showed that the proportions of insectivore, omnivore, and carnivore were 61.9%, 19%, and 9.5%, respectively. According to tolerance guild analysis, sensitive species and tolerant species were 76.1% and 4.7%, respectively, indicating a healthy trophic state in terms of food chain. The analysis by habitat guild type indicated that riffle benthic species dominated (57.1%) when compared to water column species (28.5%). The introduced species and individuals with diseases or external abnormality were not observed. Overall, the model values of IBI and QHEI suggested that the ecological health was maintained well in this upstream region.

Dispersal of potential habitat of non-native species tilapia(Oreochromis spp.) inhabiting rivers in Korea (국내 하천에 서식하는 외래종 틸라피아(tilapia)의 잠재적 서식처 확산)

  • Ju Hyoun Wang;Jung Soo Han;Jun Kil Choi;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.101-108
    • /
    • 2023
  • Recently, in relation to climate change, many studies have been conducted to predict the potential habitat area and distribution range of tilapia and the suitability of habitat for each species. Most tilapia are tropical fish that cannot survive at water temperatures below 10 to 12℃, although some tilapia can survive at 6 to 8℃. This study predicted habitable areas and the possibility of spreading of habitat ranges of tilapia (Oreochromis niloticus and Oreochromis aureus) known to inhabit domestic streams. Due to climate change, it was found that habitats in the Geum River, Mangyeong River, Dongjin River, Seomjin River, Taehwa River, Hyeongsan River, and the flowing in East Sea were possible by 2050. In addition, it was confirmed that tilapia could inhabit the preferred lentic ecosystem such as Tamjin Lake, Naju Lake, Juam Lake, Sangsa Lake, Jinyang Lake, Junam Reservoir, and Hoedong Reservoir. In particular, in the case of tilapia, which lives in tributaries of the Geumho River, Dalseo Stream, and the Nakdong River, its range of habitat is expected to expand to the middle and lower of the Nakdong River system. Therefore, it is judged that it is necessary to prepare physical and institutional management measures to prevent the spread of the local population where tilapia currently inhabits and to prevent introduction to new habitats.

Stable Channel Design for Physical Disturbance Reduction and Analysis of Habitat Suitability (물리적 교란 저감을 위한 안정하도의 설계와 서식적합도 분석)

  • Lee, Woong Hee;Moon, Hyong Geun;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • This study analyzed the aspect of bed change according to the stable channel design on the Wonju River to quantitatively evaluate habitat suitability (HS). According to the result of evaluating stable channel of object section in the Wonju River, 17 sections among total 20 sections were stable and 3 sections were unstable. Physical disturbance improvement evaluation (PDIE) was the range average showed good disturbance condition with a range average of 112.17 points. Habitat suitability index of Zacco Koreanus, the most dominant species of the Wonju River, was used for analysis of physical habitat for fish. According to the physical habitat analysis result, HS was 0.16 and weighted usable area (WUA) was $347.68m^2$. The methods of improving/introducing/removing structures and dredging stream channel were used for stable channel design of unstable channel, and analyzed PDIE according to the aspect of bed change and changes in habitat suitability. Stable channel design was possible in 19 sections in times of structures improvement/introduction/removal, and PDIE was 117.53 points, HS was 0.14 points, and WUA was $313.37m^2$. Stable channel design was possible in all 20 sections when dredging the stream channel. PDIE was 116.50 points, HS was 0.16, and WUA was $332.14m^2$. Therefore, this study obtained channel design measures that can improve physical soundness and stability of the Wonju River, and it was analyzed that it will have no impact on changes of physical disturbance and physical habitat. Furthermore, this study analyzed velocity and depth of each section and appearance frequency of riffle and pool to analyze correlation between physical disturbance and physical habitat. According to the analysis result, it was identified that the analysis of riffle and pool showed similar result as the evaluation result of physical habitat.

The Impact on Fish Assemblage by the River Connectivity Fragmentation: Case Study of the Danjang Stream, South Korea (하천 연속성 단절이 어류상에 미치는 영향: 밀양 단장천을 중심으로)

  • Seung-Been Heo;Kang-Hui Kim;Donghyun Hong;Hyeon-Sik Lee;Gu-Yeon Kim;Gea-Jae Joo;Hyunbin Jo
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.231-243
    • /
    • 2022
  • Anthropogenic disturbances on freshwater ecosystem are known to degrade biodiversity, especially on fish assemblage. In this study, we have conducted fish surveys to identify impact of a bridge construction on fish assemblages. A total of eight study sites were surveyed in the Danjang and the Dong Stream in southern part of South Korea from June to November in 2021. The fish samplings were carried out five times, using cast-nets(10×10 mm mesh size), scoop-nets(4×4 mm, 5×5 mm mesh size), set-nets (10×10 mm mesh size), and fish traps (3×3 mm mesh size), along with the Stream/River Ecosystem Survey and Health Assessment by the Ministry of Environment of Korea and basic water quality measurement. Also, we applied the species diversity index and length-weight relationship regressions on certain species to identify interspecific growth rate differences in accordance with study sites. As a result, a total of 782 individuals, 23 species and 10 families were collected. The dominant species was Zacco Koreanus and relative abundance was 50.89%. When applying the length-weight relationship regressions on certain species, the 'b' value for Z. Koreanus was lower at the downstream points than at the upstream points of the construction site. In addition, when comparing to the results of the past survey, relative density of demersal fish at the upstream and downstream points decreased from 26% to 1.4%, and from 18% to 6.3%, respectively. In conclusion, it is considered that bridge construction negatively affects the habitat of fishes, especially on demersal fishes. Therefore, appropriate conservation efforts such as installation of silt protector and sand sedimentation pond are needed to alleviate the disturbance in habitat such as occurrence of turbidity and destruction of micro-habitats.