• 제목/요약/키워드: Fish Swimming Motion

검색결과 19건 처리시간 0.022초

Design and Dynamic Analysis of Fish-like Robot;PoTuna

  • Kim, Eun-Jung;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1580-1586
    • /
    • 2003
  • This paper presents the design and the analysis of a "fish-like underwater robot". In order to develop swimming robot like a real fish, extensive hydrodynamic analysis were made followed by the study of biology of the fishes especially its maneuverability and propel styles. Swimming mode is achieved by mimicking fish-swimming of carangiform. This is the swimming mode of the fast motion using its tail and peduncle for propulsion. In order to generate configurations of vortices that gives efficient propulsion yawing and surging with a caudal fin has applied and in order to submerge and maintain the body balance pitching and heaving motion with a pair of pectoral fin is used. We have derived the equation of motion of PoTuna by two methods. In first method, we use the equation of motion of underwater vehicle with the potential flow theory for the power of propulsion. In second method, we apply the method of the equation of motion of UVM(Underwater Vehicle-Manipulator). Then, we compare these results.

  • PDF

생물학적 모방에 따른 물고기 로봇의 빠른 방향 전환 연구 (A study on the C-shape Sharp Turn of fish robot according to biological mimic)

  • 박진현;이태환;최영규
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2626-2631
    • /
    • 2011
  • CST(C-shape sharp turn)는 물고기가 유영 시 빠른 방향 전환을 위해 물고기 꼬리 부분을 빠르게 C-형태로 구부려 빠르게 방향 전환을 하는 모션을 나타낸다. 그러나 CST와 관련된 모션 궤적 함수는 아직 일반화된 함수가 없다. 본 연구에서는 생물학자들이 실제 물고기의 관측으로부터 나온 순차적인 물고기의 모션 기록을 통하여 CST룰 위한 매우 단순한 모션 함수를 제안하였다. 그리고 이를 모의실험을 통하여 제안된 함수의 유용성을 확인하였다.

가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석 (NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD)

  • 김형민
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.

고체형 꼬리 지느러미로 오스트라키폼 유영을 하는 물고기 로봇의 패러미터 식별 및 성능 분석 (Experimental Parameter Identification and Performance Analysis of a Fish Robot with Ostraciiform Swimming Mode using Rigid Caudal Fins)

  • ;이기건;김병하;최정민;강태삼
    • 로봇학회논문지
    • /
    • 제5권3호
    • /
    • pp.197-208
    • /
    • 2010
  • The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.

Robot Fish Tracking Control using an Optical Flow Object-detecting Algorithm

  • Shin, Kyoo Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.375-382
    • /
    • 2016
  • This paper realizes control of the motion of a swimming robot fish in order to implement an underwater robot fish aquarium. And it implements positional control of a two-axis trajectory path of the robot fish in the aquarium. The performance of the robot was verified though certified field tests. It provided excellent performance in driving force, durability, and water resistance in experimental results. It can control robot motion, that is, it recognizes an object by using an optical flow object-detecting algorithm, which uses a video camera rather than image-detecting sensors inside the robot fish. It is possible to find the robot's position and control the motion of the robot fish using a radio frequency (RF) modem controlled via personal computer. This paper proposes realization of robot fish motion-tracking control using the optical flow object-detecting algorithm. It was verified via performance tests of lead-lag action control of robot fish in the aquarium.

A SMA-based actuation system for a fish robot

  • Le, Chan Hoang;Nguyen, Quang Sang;Park, Hoon Cheol
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.501-515
    • /
    • 2012
  • We design and test a shape memory alloy (SMA)-based actuation system that can be used to propel a fish robot. The actuator in the system is composed of a 0.1 mm diameter SMA wire, a 0.5 mm-thick glass/epoxy composite strip, and a fixture frame. The SMA wire is installed in a pre-bent composite strip that provides initial tension to the SMA wire. The actuator can produce a blocking force of about 200 gram force (gf) and displacement of 3.5 mm at the center of the glass/epoxy strip for an 8 V application. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed, and thrust produced by the tail-beat motion. The tail-beat angle is about $20^{\circ}$, the maximum swimming speed is about 1.6 cm/s, and the measured average thrust is about 0.4 gf when the fish robot is operated at 0.9 Hz.

생체 모방 로봇 물고기의 설계와 제어에 관한 연구 (Design and Control of a Biomimetic Fish Robot)

  • 김영진;김승재;양경선;이정민;임충혁;김동환
    • 대한기계학회논문집A
    • /
    • 제36권1호
    • /
    • pp.1-7
    • /
    • 2012
  • 이 논문에서는 최소의 배터리를 소비하여 물고기 로봇을 구동하고, 물고기와 같은 유연한 운동을 할 수 있는 생체 모방(biomimetic) 물고기 로봇의 설계, 제작, 제어에 관하여 제안 하였다. 두 개 모터를 적용하여 물고기와 같이 유연하게 움직일 수 있는 방법을 제시 하였다. 중성 부력을 유지하는 방법과 빠르게 잠영하고, 방향을 전환 하기 위한 방법을 제시 하였다. 로봇 물고기의 꼬리는 유연한 움직임을 만들기 위하여 폴리머 재질을 사용하여 만들었다. 꼬리 내부는 관절과 강선으로 구성된다. 로봇 물고기에 척추에 해당하는 우레탄 골격과 관절을 이루는 핀에 연결된 강선을 당겨 꼬리에 정현파 명령을 주어 물고기와 비슷한 유영을 할 수 있도록 하였으며, 부력 조절 장치를 설치하였으며, 이 부력 조절 장치를 이용하여 물고기 로봇이 상승, 하강을 할 수 있도록 하였다.

비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사 (NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석 (NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.